一般保险定价神经网络模型的偏差正则化

Mario V. Wuthrich
{"title":"一般保险定价神经网络模型的偏差正则化","authors":"Mario V. Wuthrich","doi":"10.2139/ssrn.3347177","DOIUrl":null,"url":null,"abstract":"Generalized linear models have the important property of providing unbiased estimates on a portfolio level. This implies that generalized linear models manage to provide accurate prices on a portfolio level. On the other hand, neural networks may provide very accurate prices on an individual policy level, but state-of-the-art use of neural networks does not pay attention to unbiasedness on a portfolio level. In fact, this is an implicit consequence of using early stopping rules in gradient descent methods for model fitting. In the present paper we discuss this deficiency and we provide two different techniques that remove this drawback of neural network model fitting.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"16 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bias Regularization in Neural Network Models for General Insurance Pricing\",\"authors\":\"Mario V. Wuthrich\",\"doi\":\"10.2139/ssrn.3347177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized linear models have the important property of providing unbiased estimates on a portfolio level. This implies that generalized linear models manage to provide accurate prices on a portfolio level. On the other hand, neural networks may provide very accurate prices on an individual policy level, but state-of-the-art use of neural networks does not pay attention to unbiasedness on a portfolio level. In fact, this is an implicit consequence of using early stopping rules in gradient descent methods for model fitting. In the present paper we discuss this deficiency and we provide two different techniques that remove this drawback of neural network model fitting.\",\"PeriodicalId\":260073,\"journal\":{\"name\":\"Mathematics eJournal\",\"volume\":\"16 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3347177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3347177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

广义线性模型具有在投资组合水平上提供无偏估计的重要性质。这意味着广义线性模型能够在投资组合水平上提供准确的价格。另一方面,神经网络可以在单个政策层面上提供非常准确的价格,但最先进的神经网络使用并不关注投资组合层面的无偏性。事实上,这是在梯度下降方法中使用早期停止规则进行模型拟合的隐含结果。在本文中,我们讨论了这一缺陷,并提供了两种不同的技术来消除神经网络模型拟合的这一缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bias Regularization in Neural Network Models for General Insurance Pricing
Generalized linear models have the important property of providing unbiased estimates on a portfolio level. This implies that generalized linear models manage to provide accurate prices on a portfolio level. On the other hand, neural networks may provide very accurate prices on an individual policy level, but state-of-the-art use of neural networks does not pay attention to unbiasedness on a portfolio level. In fact, this is an implicit consequence of using early stopping rules in gradient descent methods for model fitting. In the present paper we discuss this deficiency and we provide two different techniques that remove this drawback of neural network model fitting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信