一种用于深海热图分类的模块化神经结构

Y. Stephan, B. Frachon
{"title":"一种用于深海热图分类的模块化神经结构","authors":"Y. Stephan, B. Frachon","doi":"10.1109/OCEANS.1993.325963","DOIUrl":null,"url":null,"abstract":"Presents a neural approach for bathythermogram classification. A modular architecture of multi-layer perceptrons (MLP) stemming from a preclassification into five main types of temperature profile is used. The types and classes are issued from a pre-established typology. The performance of this approach is evaluated on a Red Sea profiles database. The results show that the method is efficient but suffers from classes overlapping.<<ETX>>","PeriodicalId":130255,"journal":{"name":"Proceedings of OCEANS '93","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A modular neural architecture for bathythermograms classification\",\"authors\":\"Y. Stephan, B. Frachon\",\"doi\":\"10.1109/OCEANS.1993.325963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents a neural approach for bathythermogram classification. A modular architecture of multi-layer perceptrons (MLP) stemming from a preclassification into five main types of temperature profile is used. The types and classes are issued from a pre-established typology. The performance of this approach is evaluated on a Red Sea profiles database. The results show that the method is efficient but suffers from classes overlapping.<<ETX>>\",\"PeriodicalId\":130255,\"journal\":{\"name\":\"Proceedings of OCEANS '93\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of OCEANS '93\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.1993.325963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of OCEANS '93","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.1993.325963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种深度热图分类的神经方法。多层感知器(MLP)的模块化架构源于预分类成五种主要类型的温度分布。类型和类是从预先建立的类型中发出的。在红海剖面数据库上对该方法的性能进行了评价。结果表明,该方法是有效的,但存在类重叠的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modular neural architecture for bathythermograms classification
Presents a neural approach for bathythermogram classification. A modular architecture of multi-layer perceptrons (MLP) stemming from a preclassification into five main types of temperature profile is used. The types and classes are issued from a pre-established typology. The performance of this approach is evaluated on a Red Sea profiles database. The results show that the method is efficient but suffers from classes overlapping.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信