高效网视网膜血管分割

M. Mathews, M. AnzarS., R. K. Krishnan, A. Panthakkan
{"title":"高效网视网膜血管分割","authors":"M. Mathews, M. AnzarS., R. K. Krishnan, A. Panthakkan","doi":"10.1109/ICSPIS51252.2020.9340135","DOIUrl":null,"url":null,"abstract":"Automated techniques for retinal vessel segmentation is an active research area for the past three decades. Features associated with retinal blood vessels like morphology, area, diameter, tortuosity are important to assess the onset and progression of many eye-related and cardiovascular diseases. For retinal vessel segmentation, we propose two deep neural networks: U-net with EfficientNet as the backbone and EfficientNet encoder with LinkNet decoder. Gamma adjustment and contrast limited histogram equalization is the pre-processing stages adopted. EfficientNetB3 with U-net provide significant improvement. Results are evaluated on benchmark fundus image datasets like DRIVE [1], STARE [2], HRF [3], and CHASE_DB1 [4]. The proposed architecture obtained 96.35% accuracy, 86.35% sensitivity, 97.67% specificity, and an F1 score of 0.8465 on the DRIVE dataset.","PeriodicalId":373750,"journal":{"name":"2020 3rd International Conference on Signal Processing and Information Security (ICSPIS)","volume":"80 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"EfficientNet for retinal blood vessel segmentation\",\"authors\":\"M. Mathews, M. AnzarS., R. K. Krishnan, A. Panthakkan\",\"doi\":\"10.1109/ICSPIS51252.2020.9340135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated techniques for retinal vessel segmentation is an active research area for the past three decades. Features associated with retinal blood vessels like morphology, area, diameter, tortuosity are important to assess the onset and progression of many eye-related and cardiovascular diseases. For retinal vessel segmentation, we propose two deep neural networks: U-net with EfficientNet as the backbone and EfficientNet encoder with LinkNet decoder. Gamma adjustment and contrast limited histogram equalization is the pre-processing stages adopted. EfficientNetB3 with U-net provide significant improvement. Results are evaluated on benchmark fundus image datasets like DRIVE [1], STARE [2], HRF [3], and CHASE_DB1 [4]. The proposed architecture obtained 96.35% accuracy, 86.35% sensitivity, 97.67% specificity, and an F1 score of 0.8465 on the DRIVE dataset.\",\"PeriodicalId\":373750,\"journal\":{\"name\":\"2020 3rd International Conference on Signal Processing and Information Security (ICSPIS)\",\"volume\":\"80 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Signal Processing and Information Security (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPIS51252.2020.9340135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Signal Processing and Information Security (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS51252.2020.9340135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

视网膜血管分割的自动化技术是近三十年来研究的热点。视网膜血管的形态、面积、直径、弯曲度等特征对于评估许多眼相关疾病和心血管疾病的发生和进展非常重要。对于视网膜血管分割,我们提出了两种深度神经网络:以效率网络为骨干的U-net和以LinkNet为解码器的效率网络编码器。灰度调整和对比度限制直方图均衡化是采用的预处理阶段。使用U-net的EfficientNetB3提供了显著的改进。在DRIVE[1]、STARE[2]、HRF[3]和CHASE_DB1[4]等基准眼底图像数据集上对结果进行评估。该架构在DRIVE数据集上的准确率为96.35%,灵敏度为86.35%,特异性为97.67%,F1得分为0.8465。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EfficientNet for retinal blood vessel segmentation
Automated techniques for retinal vessel segmentation is an active research area for the past three decades. Features associated with retinal blood vessels like morphology, area, diameter, tortuosity are important to assess the onset and progression of many eye-related and cardiovascular diseases. For retinal vessel segmentation, we propose two deep neural networks: U-net with EfficientNet as the backbone and EfficientNet encoder with LinkNet decoder. Gamma adjustment and contrast limited histogram equalization is the pre-processing stages adopted. EfficientNetB3 with U-net provide significant improvement. Results are evaluated on benchmark fundus image datasets like DRIVE [1], STARE [2], HRF [3], and CHASE_DB1 [4]. The proposed architecture obtained 96.35% accuracy, 86.35% sensitivity, 97.67% specificity, and an F1 score of 0.8465 on the DRIVE dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信