冒号数据分类的吸引特征约简方法

Mohammed Al-Shalalfa, R. Alhajj
{"title":"冒号数据分类的吸引特征约简方法","authors":"Mohammed Al-Shalalfa, R. Alhajj","doi":"10.1109/AINAW.2007.103","DOIUrl":null,"url":null,"abstract":"In this paper, we try to identify a set of reduced features capable of distinguishing between two classes by performing double clustering using fuzzy c-means. We decided on using fuzzy c-means because a fuzzy model fits better the gene expression data analysis. Fuzziness parameter m is a major problem in applying fuzzy c- means method for clustering. In this approach, we applied fuzzy c-means clustering using different fuzziness parameters for two forms of microarray data. Support vector machine with different kernel functions are used for classification. As a result of the experiments conducted on the colon dataset, we have observed that CSVM is able to correctly classify the whole training and test sets when the data is log2 transformed and when in is close to 1.5.","PeriodicalId":338799,"journal":{"name":"21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Attractive Feature Reduction Approach for Colon Data Classification\",\"authors\":\"Mohammed Al-Shalalfa, R. Alhajj\",\"doi\":\"10.1109/AINAW.2007.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we try to identify a set of reduced features capable of distinguishing between two classes by performing double clustering using fuzzy c-means. We decided on using fuzzy c-means because a fuzzy model fits better the gene expression data analysis. Fuzziness parameter m is a major problem in applying fuzzy c- means method for clustering. In this approach, we applied fuzzy c-means clustering using different fuzziness parameters for two forms of microarray data. Support vector machine with different kernel functions are used for classification. As a result of the experiments conducted on the colon dataset, we have observed that CSVM is able to correctly classify the whole training and test sets when the data is log2 transformed and when in is close to 1.5.\",\"PeriodicalId\":338799,\"journal\":{\"name\":\"21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINAW.2007.103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINAW.2007.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们试图通过使用模糊c均值执行双聚类来识别一组能够区分两个类的简化特征。我们决定使用模糊c-means,因为模糊模型更适合基因表达数据分析。模糊参数m是应用模糊c均值聚类的主要问题。在这种方法中,我们对两种形式的微阵列数据使用不同的模糊参数应用模糊c均值聚类。采用不同核函数的支持向量机进行分类。通过对冒号数据集的实验,我们观察到当数据进行log2变换时,当in接近1.5时,CSVM能够正确地对整个训练集和测试集进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attractive Feature Reduction Approach for Colon Data Classification
In this paper, we try to identify a set of reduced features capable of distinguishing between two classes by performing double clustering using fuzzy c-means. We decided on using fuzzy c-means because a fuzzy model fits better the gene expression data analysis. Fuzziness parameter m is a major problem in applying fuzzy c- means method for clustering. In this approach, we applied fuzzy c-means clustering using different fuzziness parameters for two forms of microarray data. Support vector machine with different kernel functions are used for classification. As a result of the experiments conducted on the colon dataset, we have observed that CSVM is able to correctly classify the whole training and test sets when the data is log2 transformed and when in is close to 1.5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信