{"title":"基于小样本学习的鲁棒钢表面缺陷诊断方法","authors":"Vikanksh Nath, C. Chattopadhyay","doi":"10.1109/ICIP42928.2021.9506405","DOIUrl":null,"url":null,"abstract":"Surface defect recognition of products is a necessary process to guarantee the quality of industrial production. This paper proposes a hybrid model, S2D2Net (Steel Surface Defect Diagnosis Network), for an efficient and robust inspection of the steel surface during the manufacturing process. The S2D2Net uses a pretrained ImageNet model as a feature extractor and learns a Capsule Network over the extracted features. The experimental results on a publicly available steel surface defect dataset (NEU) show that S2D2Net achieved 99.17% accuracy with minimal training data and improved by 9.59% over its closest competitor based on GAN. S2D2Net proved its robustness by achieving 94.7% accuracy on a diversity enhanced dataset, ENEU, and improved by 3.6% over its closest competitor. It has better, robust recognition performance compared to other state-of-the-art DNN-based detectors.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"S2D2Net: An Improved Approach For Robust Steel Surface Defects Diagnosis With Small Sample Learning\",\"authors\":\"Vikanksh Nath, C. Chattopadhyay\",\"doi\":\"10.1109/ICIP42928.2021.9506405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface defect recognition of products is a necessary process to guarantee the quality of industrial production. This paper proposes a hybrid model, S2D2Net (Steel Surface Defect Diagnosis Network), for an efficient and robust inspection of the steel surface during the manufacturing process. The S2D2Net uses a pretrained ImageNet model as a feature extractor and learns a Capsule Network over the extracted features. The experimental results on a publicly available steel surface defect dataset (NEU) show that S2D2Net achieved 99.17% accuracy with minimal training data and improved by 9.59% over its closest competitor based on GAN. S2D2Net proved its robustness by achieving 94.7% accuracy on a diversity enhanced dataset, ENEU, and improved by 3.6% over its closest competitor. It has better, robust recognition performance compared to other state-of-the-art DNN-based detectors.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
S2D2Net: An Improved Approach For Robust Steel Surface Defects Diagnosis With Small Sample Learning
Surface defect recognition of products is a necessary process to guarantee the quality of industrial production. This paper proposes a hybrid model, S2D2Net (Steel Surface Defect Diagnosis Network), for an efficient and robust inspection of the steel surface during the manufacturing process. The S2D2Net uses a pretrained ImageNet model as a feature extractor and learns a Capsule Network over the extracted features. The experimental results on a publicly available steel surface defect dataset (NEU) show that S2D2Net achieved 99.17% accuracy with minimal training data and improved by 9.59% over its closest competitor based on GAN. S2D2Net proved its robustness by achieving 94.7% accuracy on a diversity enhanced dataset, ENEU, and improved by 3.6% over its closest competitor. It has better, robust recognition performance compared to other state-of-the-art DNN-based detectors.