{"title":"评估可调用和可放置键:一个特征函数展开方法","authors":"Dongjae Lim, Lingfei Li, V. Linetsky","doi":"10.2139/ssrn.2089131","DOIUrl":null,"url":null,"abstract":"We propose an efficient method to evaluate callable and putable bonds under a wide class of interest rate models, including the popular short rate diffusion models, as well as their time changed versions with jumps. The method is based on the eigenfunction expansion of the pricing operator. Given the set of call and put dates, the callable and putable bond pricing function is the value function of a stochastic game with stopping times. Under some technical conditions, it is shown to have an eigenfunction expansion in eigenfunctions of the pricing operator with the expansion coefficients determined through a backward recursion. For popular short rate diffusion models, such as CIR, Vasicek, 3/2, the method is orders of magnitude faster than the alternative approaches in the literature. In contrast to the alternative approaches in the literature that have so far been limited to diffusions, the method is equally applicable to short rate jump–diffusion and pure jump models constructed from diffusion models by Bochner's subordination with a Levy subordinator.","PeriodicalId":106740,"journal":{"name":"ERN: Other Econometrics: Econometric Model Construction","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Evaluating Callable and Putable Bonds: An Eigenfunction Expansion Approach\",\"authors\":\"Dongjae Lim, Lingfei Li, V. Linetsky\",\"doi\":\"10.2139/ssrn.2089131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an efficient method to evaluate callable and putable bonds under a wide class of interest rate models, including the popular short rate diffusion models, as well as their time changed versions with jumps. The method is based on the eigenfunction expansion of the pricing operator. Given the set of call and put dates, the callable and putable bond pricing function is the value function of a stochastic game with stopping times. Under some technical conditions, it is shown to have an eigenfunction expansion in eigenfunctions of the pricing operator with the expansion coefficients determined through a backward recursion. For popular short rate diffusion models, such as CIR, Vasicek, 3/2, the method is orders of magnitude faster than the alternative approaches in the literature. In contrast to the alternative approaches in the literature that have so far been limited to diffusions, the method is equally applicable to short rate jump–diffusion and pure jump models constructed from diffusion models by Bochner's subordination with a Levy subordinator.\",\"PeriodicalId\":106740,\"journal\":{\"name\":\"ERN: Other Econometrics: Econometric Model Construction\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Econometric Model Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2089131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric Model Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2089131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating Callable and Putable Bonds: An Eigenfunction Expansion Approach
We propose an efficient method to evaluate callable and putable bonds under a wide class of interest rate models, including the popular short rate diffusion models, as well as their time changed versions with jumps. The method is based on the eigenfunction expansion of the pricing operator. Given the set of call and put dates, the callable and putable bond pricing function is the value function of a stochastic game with stopping times. Under some technical conditions, it is shown to have an eigenfunction expansion in eigenfunctions of the pricing operator with the expansion coefficients determined through a backward recursion. For popular short rate diffusion models, such as CIR, Vasicek, 3/2, the method is orders of magnitude faster than the alternative approaches in the literature. In contrast to the alternative approaches in the literature that have so far been limited to diffusions, the method is equally applicable to short rate jump–diffusion and pure jump models constructed from diffusion models by Bochner's subordination with a Levy subordinator.