{"title":"利用非齐次泊松过程进行计算机病毒传播的统计推断","authors":"H. Okamura, K. Tateishi, T. Dohi","doi":"10.1109/ISSRE.2007.28","DOIUrl":null,"url":null,"abstract":"This paper presents statistical inference of computer virus propagation using non-homogeneous Poisson processes (NHPPs). Under some mathematical assumptions, the number of infected hosts can be modeled by an NHPP In particular, this paper applies a framework of mixed-type NHPPs to the statistical inference of periodic virus propagation. The mixed-type NHPP is defined by a superposition of NHPPs. In numerical experiments, we examine a goodness-of-fit criterion of NHPPs on fitting to real virus infection data, and discuss the effectiveness of the model-based prediction approach for computer virus propagation.","PeriodicalId":193805,"journal":{"name":"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)","volume":"150 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Statistical Inference of Computer Virus Propagation Using Non-Homogeneous Poisson Processes\",\"authors\":\"H. Okamura, K. Tateishi, T. Dohi\",\"doi\":\"10.1109/ISSRE.2007.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents statistical inference of computer virus propagation using non-homogeneous Poisson processes (NHPPs). Under some mathematical assumptions, the number of infected hosts can be modeled by an NHPP In particular, this paper applies a framework of mixed-type NHPPs to the statistical inference of periodic virus propagation. The mixed-type NHPP is defined by a superposition of NHPPs. In numerical experiments, we examine a goodness-of-fit criterion of NHPPs on fitting to real virus infection data, and discuss the effectiveness of the model-based prediction approach for computer virus propagation.\",\"PeriodicalId\":193805,\"journal\":{\"name\":\"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)\",\"volume\":\"150 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE.2007.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.2007.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Statistical Inference of Computer Virus Propagation Using Non-Homogeneous Poisson Processes
This paper presents statistical inference of computer virus propagation using non-homogeneous Poisson processes (NHPPs). Under some mathematical assumptions, the number of infected hosts can be modeled by an NHPP In particular, this paper applies a framework of mixed-type NHPPs to the statistical inference of periodic virus propagation. The mixed-type NHPP is defined by a superposition of NHPPs. In numerical experiments, we examine a goodness-of-fit criterion of NHPPs on fitting to real virus infection data, and discuss the effectiveness of the model-based prediction approach for computer virus propagation.