sentilang:一种语言中立的基于图的微博数据情感分析方法

M. Abulaish, M. Rahimi, Habeebullah Ebrahemi, Amit Kumar Sah
{"title":"sentilang:一种语言中立的基于图的微博数据情感分析方法","authors":"M. Abulaish, M. Rahimi, Habeebullah Ebrahemi, Amit Kumar Sah","doi":"10.1145/3350546.3352568","DOIUrl":null,"url":null,"abstract":"In this paper, we present a language-neutral graph-based sentiment analysis approach, Senti LangN, which uses character n-gram graph for modelling textual data to handle language-neutral unstructured expressions and noisy data. Since ordering and positioning of characters and words in a document plays a vital role in content analysis, the SentiLangN employs the longest common subsequence and degree similarity to capture inherent semantics of the textual data. SentiLangN introduces averaged character n-gram graph model and an application of long-short-term memory (LSTN) approach for sentiment analysis. The performance of SentiLangN is evaluated over real Twitter dataset, and it performs better than the individual n-gram graph models and traditional machine learning algorithms like C4.5. It is also compared with one of the state-of-the-art methods and performs significantly better. CCS CONCEPTS • Information systems $\\rightarrow$ Data analytics; Sentiment analysis; • Human-centered computing $\\rightarrow$ Social network analysis.","PeriodicalId":171168,"journal":{"name":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"154 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SentiLangN: A Language-Neutral Graph-Based Approach for Sentiment Analysis in Microblogging Data\",\"authors\":\"M. Abulaish, M. Rahimi, Habeebullah Ebrahemi, Amit Kumar Sah\",\"doi\":\"10.1145/3350546.3352568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a language-neutral graph-based sentiment analysis approach, Senti LangN, which uses character n-gram graph for modelling textual data to handle language-neutral unstructured expressions and noisy data. Since ordering and positioning of characters and words in a document plays a vital role in content analysis, the SentiLangN employs the longest common subsequence and degree similarity to capture inherent semantics of the textual data. SentiLangN introduces averaged character n-gram graph model and an application of long-short-term memory (LSTN) approach for sentiment analysis. The performance of SentiLangN is evaluated over real Twitter dataset, and it performs better than the individual n-gram graph models and traditional machine learning algorithms like C4.5. It is also compared with one of the state-of-the-art methods and performs significantly better. CCS CONCEPTS • Information systems $\\\\rightarrow$ Data analytics; Sentiment analysis; • Human-centered computing $\\\\rightarrow$ Social network analysis.\",\"PeriodicalId\":171168,\"journal\":{\"name\":\"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"154 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3350546.3352568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3350546.3352568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种基于语言中立图的情感分析方法Senti LangN,该方法使用字符n-图对文本数据建模,以处理语言中立的非结构化表达式和噪声数据。由于文档中字符和单词的排序和定位在内容分析中起着至关重要的作用,因此SentiLangN使用最长公共子序列和相似度来捕获文本数据的固有语义。SentiLangN引入了平均字符n图模型和长短期记忆(LSTN)方法在情感分析中的应用。SentiLangN的性能在真实的Twitter数据集上进行了评估,它比单个n图模型和传统的机器学习算法(如C4.5)表现得更好。它还与最先进的方法之一进行了比较,性能明显更好。CCS CONCEPTS•信息系统$\右箭头$数据分析;情绪分析;•以人为本的计算$\右箭头$社会网络分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SentiLangN: A Language-Neutral Graph-Based Approach for Sentiment Analysis in Microblogging Data
In this paper, we present a language-neutral graph-based sentiment analysis approach, Senti LangN, which uses character n-gram graph for modelling textual data to handle language-neutral unstructured expressions and noisy data. Since ordering and positioning of characters and words in a document plays a vital role in content analysis, the SentiLangN employs the longest common subsequence and degree similarity to capture inherent semantics of the textual data. SentiLangN introduces averaged character n-gram graph model and an application of long-short-term memory (LSTN) approach for sentiment analysis. The performance of SentiLangN is evaluated over real Twitter dataset, and it performs better than the individual n-gram graph models and traditional machine learning algorithms like C4.5. It is also compared with one of the state-of-the-art methods and performs significantly better. CCS CONCEPTS • Information systems $\rightarrow$ Data analytics; Sentiment analysis; • Human-centered computing $\rightarrow$ Social network analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信