强降雨条件下混凝土砌块路面水力性能研究

L. Sedyowati, E. Susanti
{"title":"强降雨条件下混凝土砌块路面水力性能研究","authors":"L. Sedyowati, E. Susanti","doi":"10.21776/UB.CIVENSE.2019.00103","DOIUrl":null,"url":null,"abstract":"High rainfall intensity will generate different response on the concrete block pavement (CBP) performance. A study found that larger openings of CBP did not lead more water penetrated. In other study, larger openings can lead greater decrease in runoff velocity. The correlation between the openings, water penetration and runoff velocity has remained unclear. In this study, we investigated hydraulic performance of CBP as an impact of surface roughness condition, under high rainfall intensities, saturated sub-base layer, and various slope surfaces. We conducted experiment using a 2 m by 6 m of rectangular CBP layer with herringbone 90 and basket-weave pattern. We used a modified dye tracing method in view to monitor the surface flow velocity under various high rainfall intensities. The results showed that hydraulic performance of surface runoff in the CBP layer was more influenced by the surface roughness condition. The roughness condition was very sensitive to the change in surface configuration of the CBP. The relationship between rainfall intensity, surface slope and roughness number followed polynomial functions. A further study is required to investigate the appropriate quality of CBPs, which have high durability applied over a steep slope surface and under high rainfall intensities.","PeriodicalId":432135,"journal":{"name":"Civil and Environmental Science","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hydraulic Performance of Concrete Block Pavement under High Rainfall Intensities\",\"authors\":\"L. Sedyowati, E. Susanti\",\"doi\":\"10.21776/UB.CIVENSE.2019.00103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High rainfall intensity will generate different response on the concrete block pavement (CBP) performance. A study found that larger openings of CBP did not lead more water penetrated. In other study, larger openings can lead greater decrease in runoff velocity. The correlation between the openings, water penetration and runoff velocity has remained unclear. In this study, we investigated hydraulic performance of CBP as an impact of surface roughness condition, under high rainfall intensities, saturated sub-base layer, and various slope surfaces. We conducted experiment using a 2 m by 6 m of rectangular CBP layer with herringbone 90 and basket-weave pattern. We used a modified dye tracing method in view to monitor the surface flow velocity under various high rainfall intensities. The results showed that hydraulic performance of surface runoff in the CBP layer was more influenced by the surface roughness condition. The roughness condition was very sensitive to the change in surface configuration of the CBP. The relationship between rainfall intensity, surface slope and roughness number followed polynomial functions. A further study is required to investigate the appropriate quality of CBPs, which have high durability applied over a steep slope surface and under high rainfall intensities.\",\"PeriodicalId\":432135,\"journal\":{\"name\":\"Civil and Environmental Science\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil and Environmental Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21776/UB.CIVENSE.2019.00103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil and Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21776/UB.CIVENSE.2019.00103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高降雨强度会对混凝土砌块路面的性能产生不同的影响。一项研究发现,CBP更大的开口并没有导致更多的水渗透。在其他研究中,开孔越大,径流速度下降越大。开口、水渗透和径流速度之间的关系尚不清楚。在本研究中,我们研究了地表粗糙度条件、高降雨强度、饱和亚基层和不同斜坡表面对CBP水力性能的影响。实验采用2米× 6米的矩形人字形90花篮编织CBP层。为了监测不同强降雨条件下的地表流速,我们采用了一种改进的染料示踪法。结果表明,CBP层地表径流的水力特性受地表粗糙度的影响较大。表面粗糙度对CBP表面结构的变化非常敏感。降雨强度、地表坡度和粗糙度数之间的关系服从多项式函数。需要进一步研究CBPs的适当质量,CBPs在陡峭的斜坡表面和高降雨强度下具有高耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydraulic Performance of Concrete Block Pavement under High Rainfall Intensities
High rainfall intensity will generate different response on the concrete block pavement (CBP) performance. A study found that larger openings of CBP did not lead more water penetrated. In other study, larger openings can lead greater decrease in runoff velocity. The correlation between the openings, water penetration and runoff velocity has remained unclear. In this study, we investigated hydraulic performance of CBP as an impact of surface roughness condition, under high rainfall intensities, saturated sub-base layer, and various slope surfaces. We conducted experiment using a 2 m by 6 m of rectangular CBP layer with herringbone 90 and basket-weave pattern. We used a modified dye tracing method in view to monitor the surface flow velocity under various high rainfall intensities. The results showed that hydraulic performance of surface runoff in the CBP layer was more influenced by the surface roughness condition. The roughness condition was very sensitive to the change in surface configuration of the CBP. The relationship between rainfall intensity, surface slope and roughness number followed polynomial functions. A further study is required to investigate the appropriate quality of CBPs, which have high durability applied over a steep slope surface and under high rainfall intensities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信