基于全向视觉和高斯模型的移动机器人自定位

Diego Campos-Sobrino, Francisco Coral-Sabido, Martha Varguez-Moo, Víctor Uc Cetina, A. Espinosa-Romero
{"title":"基于全向视觉和高斯模型的移动机器人自定位","authors":"Diego Campos-Sobrino, Francisco Coral-Sabido, Martha Varguez-Moo, Víctor Uc Cetina, A. Espinosa-Romero","doi":"10.1109/ICMLA.2011.95","DOIUrl":null,"url":null,"abstract":"We present preliminary results derived from our project on robot self localization using omni directional images. In our approach, features are generated through the computation of covariance matrices that capture important patterns that relates changes in pixel intensities. The learning models used are Mixture of Gaussians and Gaussian Discriminant Analysis. The first method is used initially to test the viability of our feature vectors, and at the same time provides useful information about a natural way of clustering the images in our traning set. Once we determined a reliable set of features, we generated the Gaussian discriminant functions. We show promising experimental results obtained with the Pioneer P3-DX robot in the hallways of the School of Mathematics at the Yucatan Autonomous University in Mexico.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobile Robot Self-Localization Based on Omnidirectional Vision and Gaussian Models\",\"authors\":\"Diego Campos-Sobrino, Francisco Coral-Sabido, Martha Varguez-Moo, Víctor Uc Cetina, A. Espinosa-Romero\",\"doi\":\"10.1109/ICMLA.2011.95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present preliminary results derived from our project on robot self localization using omni directional images. In our approach, features are generated through the computation of covariance matrices that capture important patterns that relates changes in pixel intensities. The learning models used are Mixture of Gaussians and Gaussian Discriminant Analysis. The first method is used initially to test the viability of our feature vectors, and at the same time provides useful information about a natural way of clustering the images in our traning set. Once we determined a reliable set of features, we generated the Gaussian discriminant functions. We show promising experimental results obtained with the Pioneer P3-DX robot in the hallways of the School of Mathematics at the Yucatan Autonomous University in Mexico.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了从我们的项目中获得的初步结果,该项目使用全方位图像进行机器人自我定位。在我们的方法中,特征是通过计算协方差矩阵生成的,协方差矩阵捕获与像素强度变化相关的重要模式。使用的学习模型是混合高斯和高斯判别分析。第一种方法最初用于测试我们的特征向量的可行性,同时提供有关训练集中图像聚类的自然方法的有用信息。一旦我们确定了一组可靠的特征,我们就生成了高斯判别函数。我们展示了先锋P3-DX机器人在墨西哥尤卡坦自治大学数学学院的走廊上获得的有希望的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobile Robot Self-Localization Based on Omnidirectional Vision and Gaussian Models
We present preliminary results derived from our project on robot self localization using omni directional images. In our approach, features are generated through the computation of covariance matrices that capture important patterns that relates changes in pixel intensities. The learning models used are Mixture of Gaussians and Gaussian Discriminant Analysis. The first method is used initially to test the viability of our feature vectors, and at the same time provides useful information about a natural way of clustering the images in our traning set. Once we determined a reliable set of features, we generated the Gaussian discriminant functions. We show promising experimental results obtained with the Pioneer P3-DX robot in the hallways of the School of Mathematics at the Yucatan Autonomous University in Mexico.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信