具有BTI恢复效应的路径延迟研究

Jiebing Wu, Yongsheng Sun, Yuan Wang, Yukai Lin, M. Fan, Junlin Huang
{"title":"具有BTI恢复效应的路径延迟研究","authors":"Jiebing Wu, Yongsheng Sun, Yuan Wang, Yukai Lin, M. Fan, Junlin Huang","doi":"10.1109/ETS54262.2022.9810373","DOIUrl":null,"url":null,"abstract":"Aging degradation dominated by bias temperature instability (BTI) effect is one of the important considerations in system on chip (SOC) design margin. Research on path delay with BTI recovery effect which mitigates degradation is meaningful to set a reasonable aging margin. Since BTI recovery effect known in transistor level occurs very fast, it is a challenge to sample aged path delay in a short interval. In this paper, we propose an aging monitor to investigate the impact of BTI recovery effect on path delay degradation (Δdelay) in nanosecond intervals. The results show that the power function of recovery time accurately fits the trend of Δdelay after the removal of stress. The higher the stress voltage, the faster the absolute value of Δdelay recovers. Increasing stress time obviously reduces the recovery speed of Δdelay. It’s note that BTI recovery effect occurs not only after the removal of stress but also during AC stress. Therefore, the Δdelay is so dependent on stress type that the Δdelay with BTI recovery is 0.2 times of that without BTI recovery. The silicon data also contributes to aging model’s calibration by the introduction of BTI recovery coefficient, which has a ~4% design margin benefit in a 1GHz SOC design.","PeriodicalId":334931,"journal":{"name":"2022 IEEE European Test Symposium (ETS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Path Delay with BTI Recovery Effect\",\"authors\":\"Jiebing Wu, Yongsheng Sun, Yuan Wang, Yukai Lin, M. Fan, Junlin Huang\",\"doi\":\"10.1109/ETS54262.2022.9810373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aging degradation dominated by bias temperature instability (BTI) effect is one of the important considerations in system on chip (SOC) design margin. Research on path delay with BTI recovery effect which mitigates degradation is meaningful to set a reasonable aging margin. Since BTI recovery effect known in transistor level occurs very fast, it is a challenge to sample aged path delay in a short interval. In this paper, we propose an aging monitor to investigate the impact of BTI recovery effect on path delay degradation (Δdelay) in nanosecond intervals. The results show that the power function of recovery time accurately fits the trend of Δdelay after the removal of stress. The higher the stress voltage, the faster the absolute value of Δdelay recovers. Increasing stress time obviously reduces the recovery speed of Δdelay. It’s note that BTI recovery effect occurs not only after the removal of stress but also during AC stress. Therefore, the Δdelay is so dependent on stress type that the Δdelay with BTI recovery is 0.2 times of that without BTI recovery. The silicon data also contributes to aging model’s calibration by the introduction of BTI recovery coefficient, which has a ~4% design margin benefit in a 1GHz SOC design.\",\"PeriodicalId\":334931,\"journal\":{\"name\":\"2022 IEEE European Test Symposium (ETS)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS54262.2022.9810373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS54262.2022.9810373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

以偏置温度不稳定性(BTI)效应为主导的老化退化是影响片上系统(SOC)设计余量的重要因素之一。研究具有BTI恢复效应的路径延迟,对设置合理的老化裕度具有重要意义。由于晶体管级已知的BTI恢复效应发生得非常快,因此在短时间间隔内采样老化路径延迟是一个挑战。在本文中,我们提出了一个老化监视器来研究BTI恢复效应对路径延迟退化的影响(Δdelay)在纳秒间隔。结果表明,去除应力后,恢复时间的幂函数与Δdelay的趋势吻合较好。应力电压越高,Δdelay绝对值恢复得越快。增加应力时间明显降低Δdelay的恢复速度。值得注意的是,BTI恢复效应不仅发生在去除应力之后,也发生在交流应力期间。因此,Δdelay对应力类型的依赖性很大,有BTI恢复的Δdelay是没有BTI恢复的Δdelay的0.2倍。通过引入BTI恢复系数,硅数据还有助于老化模型的校准,在1GHz SOC设计中具有~4%的设计边际效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Path Delay with BTI Recovery Effect
Aging degradation dominated by bias temperature instability (BTI) effect is one of the important considerations in system on chip (SOC) design margin. Research on path delay with BTI recovery effect which mitigates degradation is meaningful to set a reasonable aging margin. Since BTI recovery effect known in transistor level occurs very fast, it is a challenge to sample aged path delay in a short interval. In this paper, we propose an aging monitor to investigate the impact of BTI recovery effect on path delay degradation (Δdelay) in nanosecond intervals. The results show that the power function of recovery time accurately fits the trend of Δdelay after the removal of stress. The higher the stress voltage, the faster the absolute value of Δdelay recovers. Increasing stress time obviously reduces the recovery speed of Δdelay. It’s note that BTI recovery effect occurs not only after the removal of stress but also during AC stress. Therefore, the Δdelay is so dependent on stress type that the Δdelay with BTI recovery is 0.2 times of that without BTI recovery. The silicon data also contributes to aging model’s calibration by the introduction of BTI recovery coefficient, which has a ~4% design margin benefit in a 1GHz SOC design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信