具有增强记忆能力的递归模糊神经网络的进化识别

D. Stavrakoudis, A. K. Papastamoulis, Ioannis B. Theocharis
{"title":"具有增强记忆能力的递归模糊神经网络的进化识别","authors":"D. Stavrakoudis, A. K. Papastamoulis, Ioannis B. Theocharis","doi":"10.1109/GEFS.2008.4484571","DOIUrl":null,"url":null,"abstract":"An enhanced memory TSK-type recurrent fuzzy network (EM-TRFN) is proposed in this paper, for dynamic control of nonlinear systems. The network employs feedback connections in the rule layer, with their synaptic links being implemented through finite impulse response (FIR) filters. Thus, the network structure is enriched in terms of past information processing capabilities. Both structure and parameter learning are performed through a hybrid evolutionary algorithm, with its representation scheme employing variable-length mixed-type chromosomes. Comparative results in a control problem of a dynamic system prove the EM-TRFN's structural merits, as well as the proposed learning algorithm's ability in dealing with complex search spaces.","PeriodicalId":343300,"journal":{"name":"2008 3rd International Workshop on Genetic and Evolving Systems","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary identification of a recurrent fuzzy neural network with enhanced memory capabilities\",\"authors\":\"D. Stavrakoudis, A. K. Papastamoulis, Ioannis B. Theocharis\",\"doi\":\"10.1109/GEFS.2008.4484571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An enhanced memory TSK-type recurrent fuzzy network (EM-TRFN) is proposed in this paper, for dynamic control of nonlinear systems. The network employs feedback connections in the rule layer, with their synaptic links being implemented through finite impulse response (FIR) filters. Thus, the network structure is enriched in terms of past information processing capabilities. Both structure and parameter learning are performed through a hybrid evolutionary algorithm, with its representation scheme employing variable-length mixed-type chromosomes. Comparative results in a control problem of a dynamic system prove the EM-TRFN's structural merits, as well as the proposed learning algorithm's ability in dealing with complex search spaces.\",\"PeriodicalId\":343300,\"journal\":{\"name\":\"2008 3rd International Workshop on Genetic and Evolving Systems\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 3rd International Workshop on Genetic and Evolving Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GEFS.2008.4484571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd International Workshop on Genetic and Evolving Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEFS.2008.4484571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对非线性系统的动态控制问题,提出了一种增强记忆tsk型递归模糊网络。该网络在规则层采用反馈连接,其突触连接通过有限脉冲响应(FIR)滤波器实现。因此,网络结构在过去的信息处理能力方面得到了丰富。结构学习和参数学习都是通过混合进化算法进行的,该算法采用变长混合型染色体的表示方案。在一个动态系统控制问题中的比较结果证明了EM-TRFN在结构上的优点,以及所提出的学习算法处理复杂搜索空间的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary identification of a recurrent fuzzy neural network with enhanced memory capabilities
An enhanced memory TSK-type recurrent fuzzy network (EM-TRFN) is proposed in this paper, for dynamic control of nonlinear systems. The network employs feedback connections in the rule layer, with their synaptic links being implemented through finite impulse response (FIR) filters. Thus, the network structure is enriched in terms of past information processing capabilities. Both structure and parameter learning are performed through a hybrid evolutionary algorithm, with its representation scheme employing variable-length mixed-type chromosomes. Comparative results in a control problem of a dynamic system prove the EM-TRFN's structural merits, as well as the proposed learning algorithm's ability in dealing with complex search spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信