基于PSO DFFP的PV面板非隔离CI DC-DC变换器性能分析

C. Nagarajan, K. Umadevi, S. Saravanan, M. Muruganandam
{"title":"基于PSO DFFP的PV面板非隔离CI DC-DC变换器性能分析","authors":"C. Nagarajan, K. Umadevi, S. Saravanan, M. Muruganandam","doi":"10.31763/ijrcs.v2i2.628","DOIUrl":null,"url":null,"abstract":"This article presents the modeling and development of a DC-DC converter with Partial Swarm Optimization with Distinctive Feed Forward Propagation (PSO-DFFP) controller for hybrid power systems, including photovoltaic panels. The transient and dynamic analysis of the proposed controller has been presented. The PSO-DFFP controller has been designed to improve the operating efficiency and reduces the input converter current ripple. The ANFIS and PSO DFFP controllers are developed, and the performance of the system is compared. The proposed system reduces the switching losses and voltage drops in switching modes. The proposed system is demonstrated and developed with a 200W, 100kHz model. From the experimental results, it can be exposed that the proposed system is acceptable for PV applications.","PeriodicalId":409364,"journal":{"name":"International Journal of Robotics and Control Systems","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Performance Analysis of PSO DFFP Based DC-DC Converter with Non Isolated CI using PV Panel\",\"authors\":\"C. Nagarajan, K. Umadevi, S. Saravanan, M. Muruganandam\",\"doi\":\"10.31763/ijrcs.v2i2.628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the modeling and development of a DC-DC converter with Partial Swarm Optimization with Distinctive Feed Forward Propagation (PSO-DFFP) controller for hybrid power systems, including photovoltaic panels. The transient and dynamic analysis of the proposed controller has been presented. The PSO-DFFP controller has been designed to improve the operating efficiency and reduces the input converter current ripple. The ANFIS and PSO DFFP controllers are developed, and the performance of the system is compared. The proposed system reduces the switching losses and voltage drops in switching modes. The proposed system is demonstrated and developed with a 200W, 100kHz model. From the experimental results, it can be exposed that the proposed system is acceptable for PV applications.\",\"PeriodicalId\":409364,\"journal\":{\"name\":\"International Journal of Robotics and Control Systems\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics and Control Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31763/ijrcs.v2i2.628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics and Control Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31763/ijrcs.v2i2.628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种基于PSO-DFFP控制器的DC-DC变换器的建模和开发,该变换器适用于包括光伏板在内的混合电力系统。对所提出的控制器进行了暂态和动态分析。设计了PSO-DFFP控制器,提高了工作效率,减小了输入变换器电流纹波。设计了ANFIS控制器和PSO DFFP控制器,并对系统的性能进行了比较。该系统降低了开关模式的开关损耗和电压降。该系统在200W, 100kHz的模型下进行了演示和开发。从实验结果可以看出,所提出的系统是可以接受的光伏应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of PSO DFFP Based DC-DC Converter with Non Isolated CI using PV Panel
This article presents the modeling and development of a DC-DC converter with Partial Swarm Optimization with Distinctive Feed Forward Propagation (PSO-DFFP) controller for hybrid power systems, including photovoltaic panels. The transient and dynamic analysis of the proposed controller has been presented. The PSO-DFFP controller has been designed to improve the operating efficiency and reduces the input converter current ripple. The ANFIS and PSO DFFP controllers are developed, and the performance of the system is compared. The proposed system reduces the switching losses and voltage drops in switching modes. The proposed system is demonstrated and developed with a 200W, 100kHz model. From the experimental results, it can be exposed that the proposed system is acceptable for PV applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信