基于进化的雾网络智能生活应用布局算法

Raheleh Moallemi, Arash Bozorgchenani, D. Tarchi
{"title":"基于进化的雾网络智能生活应用布局算法","authors":"Raheleh Moallemi, Arash Bozorgchenani, D. Tarchi","doi":"10.1109/GCWkshps45667.2019.9024660","DOIUrl":null,"url":null,"abstract":"Fog computing is an emerging model, complementing the cloud computing platform, introduced to support the Internet of Things (IoT) processing requests at the edge of the network. Smart-living IoT scenarios require the execution of multiple processing tasks at the edge of the network and leveraging on the Fog Computing approach results to be a worthwhile solution. Genetic Algorithms (GA) are a heuristic search and optimization class of techniques inspired by natural evolution. We propose two GA-based approaches for optimizing the processing task placement in a fog computing edge infrastructure aiming to support the Smart-living IoT nodes requests. The numerical results obtained in Matlab show that both GA-based approaches allow to maximize the covered areas while minimizing the resource wastage through the minimization of the overlapping areas.","PeriodicalId":210825,"journal":{"name":"2019 IEEE Globecom Workshops (GC Wkshps)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Evolutionary-Based Algorithm for Smart-Living Applications Placement in Fog Networks\",\"authors\":\"Raheleh Moallemi, Arash Bozorgchenani, D. Tarchi\",\"doi\":\"10.1109/GCWkshps45667.2019.9024660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fog computing is an emerging model, complementing the cloud computing platform, introduced to support the Internet of Things (IoT) processing requests at the edge of the network. Smart-living IoT scenarios require the execution of multiple processing tasks at the edge of the network and leveraging on the Fog Computing approach results to be a worthwhile solution. Genetic Algorithms (GA) are a heuristic search and optimization class of techniques inspired by natural evolution. We propose two GA-based approaches for optimizing the processing task placement in a fog computing edge infrastructure aiming to support the Smart-living IoT nodes requests. The numerical results obtained in Matlab show that both GA-based approaches allow to maximize the covered areas while minimizing the resource wastage through the minimization of the overlapping areas.\",\"PeriodicalId\":210825,\"journal\":{\"name\":\"2019 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCWkshps45667.2019.9024660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps45667.2019.9024660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

雾计算是一种新兴的模型,与云计算平台相辅相成,旨在支持物联网(IoT)在网络边缘的处理请求。智能生活物联网场景需要在网络边缘执行多个处理任务,并利用雾计算方法成为一个有价值的解决方案。遗传算法是一种受自然进化启发的启发式搜索和优化技术。我们提出了两种基于遗传算法的方法来优化雾计算边缘基础设施中的处理任务放置,旨在支持智能生活物联网节点的请求。在Matlab中得到的数值结果表明,两种基于遗传算法的方法都可以通过最小化重叠区域来最大化覆盖面积,同时最小化资源浪费。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Evolutionary-Based Algorithm for Smart-Living Applications Placement in Fog Networks
Fog computing is an emerging model, complementing the cloud computing platform, introduced to support the Internet of Things (IoT) processing requests at the edge of the network. Smart-living IoT scenarios require the execution of multiple processing tasks at the edge of the network and leveraging on the Fog Computing approach results to be a worthwhile solution. Genetic Algorithms (GA) are a heuristic search and optimization class of techniques inspired by natural evolution. We propose two GA-based approaches for optimizing the processing task placement in a fog computing edge infrastructure aiming to support the Smart-living IoT nodes requests. The numerical results obtained in Matlab show that both GA-based approaches allow to maximize the covered areas while minimizing the resource wastage through the minimization of the overlapping areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信