fpga上的大规模元胞自动机

Nikolaos Kyparissas, A. Dollas
{"title":"fpga上的大规模元胞自动机","authors":"Nikolaos Kyparissas, A. Dollas","doi":"10.1145/3423185","DOIUrl":null,"url":null,"abstract":"Cellular automata (CA) are discrete mathematical models discovered in the 1940s by John von Neumann and Stanislaw Ulam and have been used extensively in many scientific disciplines ever since. The present work evolved from a Field Programmable Gate Array– (FPGA) based design to simulate urban growth into a generic architecture that is automatically generated by a framework to efficiently compute complex cellular automata with large 29 × 29 neighborhoods in Cartesian or toroidal grids, with 16 or 256 states per cell. The new architecture and the framework are presented in detail, including results in terms of modeling capabilities and performance. Large neighborhoods greatly enhance CA modeling capabilities, such as the implementation of anisotropic rules. Performance-wise, the proposed architecture runs on a medium-size FPGA up to 51 times faster vs. a CPU running highly optimized C code. Compared to GPUs the speedup is harder to quantify, because CA results have been reported on GPU implementations with neighborhoods up to 11 × 11, in which case FPGA performance is roughly on par with GPU; however, based on published GPU trends, for 29 × 29 neighborhoods the proposed architecture is expected to have better performance vs. a GPU, at one-10th the energy requirements. The architecture and sample designs are open source available under the creative commons license.","PeriodicalId":162787,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)","volume":"287 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Large-scale Cellular Automata on FPGAs\",\"authors\":\"Nikolaos Kyparissas, A. Dollas\",\"doi\":\"10.1145/3423185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular automata (CA) are discrete mathematical models discovered in the 1940s by John von Neumann and Stanislaw Ulam and have been used extensively in many scientific disciplines ever since. The present work evolved from a Field Programmable Gate Array– (FPGA) based design to simulate urban growth into a generic architecture that is automatically generated by a framework to efficiently compute complex cellular automata with large 29 × 29 neighborhoods in Cartesian or toroidal grids, with 16 or 256 states per cell. The new architecture and the framework are presented in detail, including results in terms of modeling capabilities and performance. Large neighborhoods greatly enhance CA modeling capabilities, such as the implementation of anisotropic rules. Performance-wise, the proposed architecture runs on a medium-size FPGA up to 51 times faster vs. a CPU running highly optimized C code. Compared to GPUs the speedup is harder to quantify, because CA results have been reported on GPU implementations with neighborhoods up to 11 × 11, in which case FPGA performance is roughly on par with GPU; however, based on published GPU trends, for 29 × 29 neighborhoods the proposed architecture is expected to have better performance vs. a GPU, at one-10th the energy requirements. The architecture and sample designs are open source available under the creative commons license.\",\"PeriodicalId\":162787,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems (TRETS)\",\"volume\":\"287 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems (TRETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3423185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3423185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

元胞自动机(CA)是20世纪40年代由约翰·冯·诺伊曼和斯坦尼斯拉夫·乌拉姆发现的离散数学模型,从那时起就被广泛应用于许多科学学科。目前的工作从基于现场可编程门阵列(FPGA)的设计演变为模拟城市增长的通用架构,该架构由框架自动生成,可以有效地计算复杂的元胞自动机,这些元胞自动机具有笛卡尔或环形网格中的大型29 × 29邻域,每个单元具有16或256个状态。详细介绍了新的体系结构和框架,包括建模能力和性能方面的结果。大邻域极大地增强了CA的建模能力,如各向异性规则的实现。性能方面,与运行高度优化的C代码的CPU相比,该架构在中等大小的FPGA上运行的速度要快51倍。与GPU相比,加速很难量化,因为CA结果已经报告了GPU实现的邻域高达11 × 11,在这种情况下,FPGA性能大致与GPU相当;然而,根据已发布的GPU趋势,对于29 × 29社区,所提出的架构预计比GPU具有更好的性能,能量需求仅为GPU的十分之一。架构和样例设计在创作共用许可下是开源的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-scale Cellular Automata on FPGAs
Cellular automata (CA) are discrete mathematical models discovered in the 1940s by John von Neumann and Stanislaw Ulam and have been used extensively in many scientific disciplines ever since. The present work evolved from a Field Programmable Gate Array– (FPGA) based design to simulate urban growth into a generic architecture that is automatically generated by a framework to efficiently compute complex cellular automata with large 29 × 29 neighborhoods in Cartesian or toroidal grids, with 16 or 256 states per cell. The new architecture and the framework are presented in detail, including results in terms of modeling capabilities and performance. Large neighborhoods greatly enhance CA modeling capabilities, such as the implementation of anisotropic rules. Performance-wise, the proposed architecture runs on a medium-size FPGA up to 51 times faster vs. a CPU running highly optimized C code. Compared to GPUs the speedup is harder to quantify, because CA results have been reported on GPU implementations with neighborhoods up to 11 × 11, in which case FPGA performance is roughly on par with GPU; however, based on published GPU trends, for 29 × 29 neighborhoods the proposed architecture is expected to have better performance vs. a GPU, at one-10th the energy requirements. The architecture and sample designs are open source available under the creative commons license.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信