多项式计算的错误检测

M. Karpovsky
{"title":"多项式计算的错误检测","authors":"M. Karpovsky","doi":"10.1049/IJ-CDT:19790011","DOIUrl":null,"url":null,"abstract":"We consider the problem of error detection in a process of computation of a polynomial over the field of complex numbers or over GF(p). By errors we mean errors in the text of a program or `stuck-at? errors in a device computing a polynomial. For error detection we use linear checks constructed by the technique of Fourier transformation over the group of binary vectors. Complexity estimations, optimal checks and estimations of the error-correcting capability of these checks are obtained.","PeriodicalId":344610,"journal":{"name":"Iee Journal on Computers and Digital Techniques","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1979-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Error detection for polynomial computations\",\"authors\":\"M. Karpovsky\",\"doi\":\"10.1049/IJ-CDT:19790011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of error detection in a process of computation of a polynomial over the field of complex numbers or over GF(p). By errors we mean errors in the text of a program or `stuck-at? errors in a device computing a polynomial. For error detection we use linear checks constructed by the technique of Fourier transformation over the group of binary vectors. Complexity estimations, optimal checks and estimations of the error-correcting capability of these checks are obtained.\",\"PeriodicalId\":344610,\"journal\":{\"name\":\"Iee Journal on Computers and Digital Techniques\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1979-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iee Journal on Computers and Digital Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/IJ-CDT:19790011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iee Journal on Computers and Digital Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IJ-CDT:19790011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

研究复数域或GF(p)域上多项式计算过程中的误差检测问题。所谓错误,我们指的是程序文本中的错误或“卡住”?计算多项式的设备错误。对于误差检测,我们使用由二元向量组的傅里叶变换技术构造的线性检查。给出了复杂度估计、最优检查和这些检查的纠错能力估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error detection for polynomial computations
We consider the problem of error detection in a process of computation of a polynomial over the field of complex numbers or over GF(p). By errors we mean errors in the text of a program or `stuck-at? errors in a device computing a polynomial. For error detection we use linear checks constructed by the technique of Fourier transformation over the group of binary vectors. Complexity estimations, optimal checks and estimations of the error-correcting capability of these checks are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信