基于支持向量机的幽默检测

Marina Pinho Garcia, Giovana Pinho Garcia, Nádia Silva
{"title":"基于支持向量机的幽默检测","authors":"Marina Pinho Garcia, Giovana Pinho Garcia, Nádia Silva","doi":"10.5753/erigo.2021.18437","DOIUrl":null,"url":null,"abstract":"This paper aims classify texts in humorous and non-humorous, while exploring the different parameters and tactics that can be used alongside the Support Vector Machine (SVM) classifier, to see and understand their impact on the classification and find the best combinations that have the best performances considering the accuracy and the F1 score. After observing the plots and analyzing the data we were able to come to a conclusion of which combination would be best to classify the texts in the testing data provided by the HaHackathon: Detecting and Rating Humor and Offense CodaLab Competition [cod 2021]. With those results we were able to give a wide view of this type of problem solutions, which can be used in further related work in this field of research.","PeriodicalId":125727,"journal":{"name":"Anais da IX Escola Regional de Informática de Goiás (ERI-GO 2021)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Humor Detection using Support Vector Machine\",\"authors\":\"Marina Pinho Garcia, Giovana Pinho Garcia, Nádia Silva\",\"doi\":\"10.5753/erigo.2021.18437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims classify texts in humorous and non-humorous, while exploring the different parameters and tactics that can be used alongside the Support Vector Machine (SVM) classifier, to see and understand their impact on the classification and find the best combinations that have the best performances considering the accuracy and the F1 score. After observing the plots and analyzing the data we were able to come to a conclusion of which combination would be best to classify the texts in the testing data provided by the HaHackathon: Detecting and Rating Humor and Offense CodaLab Competition [cod 2021]. With those results we were able to give a wide view of this type of problem solutions, which can be used in further related work in this field of research.\",\"PeriodicalId\":125727,\"journal\":{\"name\":\"Anais da IX Escola Regional de Informática de Goiás (ERI-GO 2021)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais da IX Escola Regional de Informática de Goiás (ERI-GO 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/erigo.2021.18437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais da IX Escola Regional de Informática de Goiás (ERI-GO 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/erigo.2021.18437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在对幽默和非幽默文本进行分类,同时探索与支持向量机(SVM)分类器一起使用的不同参数和策略,以了解它们对分类的影响,并在考虑准确率和F1分数的情况下找到具有最佳性能的最佳组合。在观察情节和分析数据之后,我们能够得出结论,哪种组合最适合对HaHackathon: detection and Rating Humor and Offense CodaLab Competition [cod 2021]提供的测试数据中的文本进行分类。通过这些结果,我们能够对这类问题的解决方案提供一个广泛的视角,这可以用于该研究领域的进一步相关工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Humor Detection using Support Vector Machine
This paper aims classify texts in humorous and non-humorous, while exploring the different parameters and tactics that can be used alongside the Support Vector Machine (SVM) classifier, to see and understand their impact on the classification and find the best combinations that have the best performances considering the accuracy and the F1 score. After observing the plots and analyzing the data we were able to come to a conclusion of which combination would be best to classify the texts in the testing data provided by the HaHackathon: Detecting and Rating Humor and Offense CodaLab Competition [cod 2021]. With those results we were able to give a wide view of this type of problem solutions, which can be used in further related work in this field of research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信