基于深度学习模型的泰卢固语惯用语分类集成方法

J. Briskilal, Ch V M Sai Praneeth, Ch Chaitanya, M. J. Karthik, P. P. Reddy
{"title":"基于深度学习模型的泰卢固语惯用语分类集成方法","authors":"J. Briskilal, Ch V M Sai Praneeth, Ch Chaitanya, M. J. Karthik, P. P. Reddy","doi":"10.1109/ICICT57646.2023.10134038","DOIUrl":null,"url":null,"abstract":"Text classification is a requirement for every text processing application because the web contains a vast amount of text data. Intent detection, information extraction, sentiment analysis, and spam detection involves text categorization. Since text classification uses idioms, metaphors, and polysemic words, intent detection can be difficult. It is challenging to automatically identify idioms in Natural Language Processing applications such as Information Retrieval, Machine Translation, and chatbots. In all these applications, automatic idiom recognition is crucial. In this work, idiomatic and literals sentences are being classified. Idioms are typical expressions with new meanings. This research proposes an ensemble model using pretrained deep learning models to make model with more predictive nature. The models are trained and tested using in-house dataset. Moreover, an in-house dataset that contains 1040 idiomatic and literal sentences is suggested. The experimental results demonstrate the effectiveness of the proposed approach, achieving an accuracy of 86% on the test dataset.","PeriodicalId":126489,"journal":{"name":"2023 International Conference on Inventive Computation Technologies (ICICT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Ensemble Method to Classify Telugu Idiomatic Sentences using Deep Learning Models\",\"authors\":\"J. Briskilal, Ch V M Sai Praneeth, Ch Chaitanya, M. J. Karthik, P. P. Reddy\",\"doi\":\"10.1109/ICICT57646.2023.10134038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text classification is a requirement for every text processing application because the web contains a vast amount of text data. Intent detection, information extraction, sentiment analysis, and spam detection involves text categorization. Since text classification uses idioms, metaphors, and polysemic words, intent detection can be difficult. It is challenging to automatically identify idioms in Natural Language Processing applications such as Information Retrieval, Machine Translation, and chatbots. In all these applications, automatic idiom recognition is crucial. In this work, idiomatic and literals sentences are being classified. Idioms are typical expressions with new meanings. This research proposes an ensemble model using pretrained deep learning models to make model with more predictive nature. The models are trained and tested using in-house dataset. Moreover, an in-house dataset that contains 1040 idiomatic and literal sentences is suggested. The experimental results demonstrate the effectiveness of the proposed approach, achieving an accuracy of 86% on the test dataset.\",\"PeriodicalId\":126489,\"journal\":{\"name\":\"2023 International Conference on Inventive Computation Technologies (ICICT)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Inventive Computation Technologies (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT57646.2023.10134038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Inventive Computation Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT57646.2023.10134038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文本分类是每个文本处理应用程序的需求,因为web包含大量的文本数据。意图检测、信息提取、情感分析和垃圾邮件检测都涉及到文本分类。由于文本分类使用成语、隐喻和多义词,因此意图检测可能很困难。在信息检索、机器翻译和聊天机器人等自然语言处理应用中,习语的自动识别是一个具有挑战性的问题。在所有这些应用程序中,自动成语识别是至关重要的。在这项工作中,习惯句和字面句被分类。习语是具有新含义的典型表达。本研究提出了一种使用预训练深度学习模型的集成模型,使模型具有更强的预测性。这些模型使用内部数据集进行训练和测试。此外,建议使用一个包含1040个惯用语和字面句子的内部数据集。实验结果证明了该方法的有效性,在测试数据集上达到了86%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ensemble Method to Classify Telugu Idiomatic Sentences using Deep Learning Models
Text classification is a requirement for every text processing application because the web contains a vast amount of text data. Intent detection, information extraction, sentiment analysis, and spam detection involves text categorization. Since text classification uses idioms, metaphors, and polysemic words, intent detection can be difficult. It is challenging to automatically identify idioms in Natural Language Processing applications such as Information Retrieval, Machine Translation, and chatbots. In all these applications, automatic idiom recognition is crucial. In this work, idiomatic and literals sentences are being classified. Idioms are typical expressions with new meanings. This research proposes an ensemble model using pretrained deep learning models to make model with more predictive nature. The models are trained and tested using in-house dataset. Moreover, an in-house dataset that contains 1040 idiomatic and literal sentences is suggested. The experimental results demonstrate the effectiveness of the proposed approach, achieving an accuracy of 86% on the test dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信