R. Ratasuk, B. Vejlgaard, N. Mangalvedhe, Amitava Ghosh
{"title":"NB-IoT系统,用于M2M通信","authors":"R. Ratasuk, B. Vejlgaard, N. Mangalvedhe, Amitava Ghosh","doi":"10.1109/WCNC.2016.7564708","DOIUrl":null,"url":null,"abstract":"In 3GPP, a narrowband system based on Long Term Evolution (LTE) is being introduced to support the Internet of Things. This system, named Narrowband Internet of Things (NB-IoT), can be deployed in three different operation modes - (1) stand-alone as a dedicated carrier, (2) in-band within the occupied bandwidth of a wideband LTE carrier, and (3) within the guard-band of an existing LTE carrier. In stand-alone operation mode, NB-IoT can occupy one GSM channel (200 kHz) while for in-band and guard-band operation modes, it will use one physical resource block of LTE (180 kHz). The design targets of NB-IoT include low-cost devices, high coverage (20-dB improvement over GPRS), long device battery life (more than 10 years), and massive capacity. Latency is relaxed although a delay budget of 10 seconds is the target for exception reports. The specifications for NB-IoT are expected to be finalized in 2016. In this paper, we describe the targets for NB-IoT and present a preliminary system design. In addition, coverage, capacity, latency, and battery life analysis are also presented.","PeriodicalId":436094,"journal":{"name":"2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"NB-IoT system for M2M communication\",\"authors\":\"R. Ratasuk, B. Vejlgaard, N. Mangalvedhe, Amitava Ghosh\",\"doi\":\"10.1109/WCNC.2016.7564708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 3GPP, a narrowband system based on Long Term Evolution (LTE) is being introduced to support the Internet of Things. This system, named Narrowband Internet of Things (NB-IoT), can be deployed in three different operation modes - (1) stand-alone as a dedicated carrier, (2) in-band within the occupied bandwidth of a wideband LTE carrier, and (3) within the guard-band of an existing LTE carrier. In stand-alone operation mode, NB-IoT can occupy one GSM channel (200 kHz) while for in-band and guard-band operation modes, it will use one physical resource block of LTE (180 kHz). The design targets of NB-IoT include low-cost devices, high coverage (20-dB improvement over GPRS), long device battery life (more than 10 years), and massive capacity. Latency is relaxed although a delay budget of 10 seconds is the target for exception reports. The specifications for NB-IoT are expected to be finalized in 2016. In this paper, we describe the targets for NB-IoT and present a preliminary system design. In addition, coverage, capacity, latency, and battery life analysis are also presented.\",\"PeriodicalId\":436094,\"journal\":{\"name\":\"2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC.2016.7564708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC.2016.7564708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In 3GPP, a narrowband system based on Long Term Evolution (LTE) is being introduced to support the Internet of Things. This system, named Narrowband Internet of Things (NB-IoT), can be deployed in three different operation modes - (1) stand-alone as a dedicated carrier, (2) in-band within the occupied bandwidth of a wideband LTE carrier, and (3) within the guard-band of an existing LTE carrier. In stand-alone operation mode, NB-IoT can occupy one GSM channel (200 kHz) while for in-band and guard-band operation modes, it will use one physical resource block of LTE (180 kHz). The design targets of NB-IoT include low-cost devices, high coverage (20-dB improvement over GPRS), long device battery life (more than 10 years), and massive capacity. Latency is relaxed although a delay budget of 10 seconds is the target for exception reports. The specifications for NB-IoT are expected to be finalized in 2016. In this paper, we describe the targets for NB-IoT and present a preliminary system design. In addition, coverage, capacity, latency, and battery life analysis are also presented.