一种知识强化的中国高考阅读理解方法

Xiao Zhang, Heqi Zheng, Heyan Huang, Zewen Chi, Xian-Ling Mao
{"title":"一种知识强化的中国高考阅读理解方法","authors":"Xiao Zhang, Heqi Zheng, Heyan Huang, Zewen Chi, Xian-Ling Mao","doi":"10.1109/ICKG52313.2021.00053","DOIUrl":null,"url":null,"abstract":"Chinese GaoKao Reading Comprehension is a chal-lenging NLP task. It requires strong logical reasoning ability to capture deep semantic relations between the questions and answers. However, most traditional models cannot learn sufficient inference ability, because of the scarcity of Chinese GaoKao reading comprehension data. Intuitively, there are two methods to improve the reading comprehension ability for Chinese GaoKao reading comprehension task. 1). Increase the scale of data. 2). Introduce additional related knowledge. In this paper, we propose a novel method based on adversarial training and knowledge distillation, which can be trained in other knowledge-rich datasets and transferred to the Chinese GaoKao reading comprehension task. Extensive experiments show that our proposed model performs better than the state-of-the-art baselines. The code and the relevant dataset will be publicly avaible.","PeriodicalId":174126,"journal":{"name":"2021 IEEE International Conference on Big Knowledge (ICBK)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Knowledge Enhanced Chinese GaoKao Reading Comprehension Method\",\"authors\":\"Xiao Zhang, Heqi Zheng, Heyan Huang, Zewen Chi, Xian-Ling Mao\",\"doi\":\"10.1109/ICKG52313.2021.00053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chinese GaoKao Reading Comprehension is a chal-lenging NLP task. It requires strong logical reasoning ability to capture deep semantic relations between the questions and answers. However, most traditional models cannot learn sufficient inference ability, because of the scarcity of Chinese GaoKao reading comprehension data. Intuitively, there are two methods to improve the reading comprehension ability for Chinese GaoKao reading comprehension task. 1). Increase the scale of data. 2). Introduce additional related knowledge. In this paper, we propose a novel method based on adversarial training and knowledge distillation, which can be trained in other knowledge-rich datasets and transferred to the Chinese GaoKao reading comprehension task. Extensive experiments show that our proposed model performs better than the state-of-the-art baselines. The code and the relevant dataset will be publicly avaible.\",\"PeriodicalId\":174126,\"journal\":{\"name\":\"2021 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICKG52313.2021.00053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKG52313.2021.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

中国高考阅读理解是一项具有挑战性的NLP任务。它需要很强的逻辑推理能力来捕捉问题和答案之间的深层语义关系。然而,由于中国高考阅读理解数据的缺乏,大多数传统模型无法学习到足够的推理能力。直观地说,提高中国高考阅读理解任务的阅读理解能力有两种方法。1)增加数据规模。2)引入额外的相关知识。在本文中,我们提出了一种基于对抗训练和知识蒸馏的新方法,该方法可以在其他知识丰富的数据集上进行训练,并转移到中国高考阅读理解任务中。大量的实验表明,我们提出的模型比最先进的基线性能更好。代码和相关数据集将向公众开放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Knowledge Enhanced Chinese GaoKao Reading Comprehension Method
Chinese GaoKao Reading Comprehension is a chal-lenging NLP task. It requires strong logical reasoning ability to capture deep semantic relations between the questions and answers. However, most traditional models cannot learn sufficient inference ability, because of the scarcity of Chinese GaoKao reading comprehension data. Intuitively, there are two methods to improve the reading comprehension ability for Chinese GaoKao reading comprehension task. 1). Increase the scale of data. 2). Introduce additional related knowledge. In this paper, we propose a novel method based on adversarial training and knowledge distillation, which can be trained in other knowledge-rich datasets and transferred to the Chinese GaoKao reading comprehension task. Extensive experiments show that our proposed model performs better than the state-of-the-art baselines. The code and the relevant dataset will be publicly avaible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信