{"title":"鲁棒语音识别的参考特征环境和说话人加权","authors":"Y. Liao, Hung-Hsiang Fang, C. Yang","doi":"10.1109/CHINSL.2008.ECP.31","DOIUrl":null,"url":null,"abstract":"In this paper a reference eigen-environment and speaker weighting (RESW) method is proposed for online HMM adaptation. RESW establishes multiple eigen-MLLR subspaces as the set of a priori knowledge according to certain affecting factors, such as noise type, SNR, male and female. It then projects an input test utterance simultaneously into the set of eigen-subspaces and optimally synthesizes out a set of suitable HMMs. The proposed RESW was evaluated on Aurora 2 multi- condition training task. Experimental results showed that average word error rate (WER) of 6.11% was achieved. RESW not only outperformed the multi-condition training baseline (Multi-Con., 13.72%) but also the blind ETSI advanced DSR front-end (ETSI-Adv., 8.65%) and the histogram equalization (HEQ, 8.66%) and the non-blind reference model weighting (RMW, 7.29%) and Eigen-MLLR (6.14%) approaches.","PeriodicalId":291958,"journal":{"name":"2008 6th International Symposium on Chinese Spoken Language Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reference Eigen-Environment and Speaker Weighting for Robust Speech Recognition\",\"authors\":\"Y. Liao, Hung-Hsiang Fang, C. Yang\",\"doi\":\"10.1109/CHINSL.2008.ECP.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a reference eigen-environment and speaker weighting (RESW) method is proposed for online HMM adaptation. RESW establishes multiple eigen-MLLR subspaces as the set of a priori knowledge according to certain affecting factors, such as noise type, SNR, male and female. It then projects an input test utterance simultaneously into the set of eigen-subspaces and optimally synthesizes out a set of suitable HMMs. The proposed RESW was evaluated on Aurora 2 multi- condition training task. Experimental results showed that average word error rate (WER) of 6.11% was achieved. RESW not only outperformed the multi-condition training baseline (Multi-Con., 13.72%) but also the blind ETSI advanced DSR front-end (ETSI-Adv., 8.65%) and the histogram equalization (HEQ, 8.66%) and the non-blind reference model weighting (RMW, 7.29%) and Eigen-MLLR (6.14%) approaches.\",\"PeriodicalId\":291958,\"journal\":{\"name\":\"2008 6th International Symposium on Chinese Spoken Language Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 6th International Symposium on Chinese Spoken Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CHINSL.2008.ECP.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 6th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHINSL.2008.ECP.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reference Eigen-Environment and Speaker Weighting for Robust Speech Recognition
In this paper a reference eigen-environment and speaker weighting (RESW) method is proposed for online HMM adaptation. RESW establishes multiple eigen-MLLR subspaces as the set of a priori knowledge according to certain affecting factors, such as noise type, SNR, male and female. It then projects an input test utterance simultaneously into the set of eigen-subspaces and optimally synthesizes out a set of suitable HMMs. The proposed RESW was evaluated on Aurora 2 multi- condition training task. Experimental results showed that average word error rate (WER) of 6.11% was achieved. RESW not only outperformed the multi-condition training baseline (Multi-Con., 13.72%) but also the blind ETSI advanced DSR front-end (ETSI-Adv., 8.65%) and the histogram equalization (HEQ, 8.66%) and the non-blind reference model weighting (RMW, 7.29%) and Eigen-MLLR (6.14%) approaches.