在MRI图像中使用自定义迁移学习简化脑肿瘤分类

Javed Hossain, Md. Touhidul Islam, Md. Taufiqul Haque Khan Tusar
{"title":"在MRI图像中使用自定义迁移学习简化脑肿瘤分类","authors":"Javed Hossain, Md. Touhidul Islam, Md. Taufiqul Haque Khan Tusar","doi":"10.1109/SIST58284.2023.10223507","DOIUrl":null,"url":null,"abstract":"Brain tumors are increasingly prevalent, characterized by the uncontrolled spread of aberrant tissues in the brain, with almost 700,000 new cases diagnosed globally each year. Magnetic Resonance Imaging (MRI) is commonly used for the diagnosis of brain tumors and accurate classification is a critical clinical procedure. In this study, we propose an efficient solution for classifying brain tumors from MRI images using custom transfer learning networks. While several researchers have employed various pre-trained architectures such as RESNET-50, ALEXNET, VGG-16, and VGG-19, these methods often suffer from high computational complexity. To address this issue, we present a custom and lightweight model using a Convolutional Neural Network-based pre-trained architecture with reduced complexity. Specifically, we employ the VGG-19 architecture with additional hidden layers, which reduces the complexity of the base architecture but improves computational efficiency. The objective is to achieve high classification accuracy using a novel approach. Finally, the result demonstrates a classification accuracy of 96.42%.","PeriodicalId":367406,"journal":{"name":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Streamlining Brain Tumor Classification with Custom Transfer Learning in MRI Images\",\"authors\":\"Javed Hossain, Md. Touhidul Islam, Md. Taufiqul Haque Khan Tusar\",\"doi\":\"10.1109/SIST58284.2023.10223507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain tumors are increasingly prevalent, characterized by the uncontrolled spread of aberrant tissues in the brain, with almost 700,000 new cases diagnosed globally each year. Magnetic Resonance Imaging (MRI) is commonly used for the diagnosis of brain tumors and accurate classification is a critical clinical procedure. In this study, we propose an efficient solution for classifying brain tumors from MRI images using custom transfer learning networks. While several researchers have employed various pre-trained architectures such as RESNET-50, ALEXNET, VGG-16, and VGG-19, these methods often suffer from high computational complexity. To address this issue, we present a custom and lightweight model using a Convolutional Neural Network-based pre-trained architecture with reduced complexity. Specifically, we employ the VGG-19 architecture with additional hidden layers, which reduces the complexity of the base architecture but improves computational efficiency. The objective is to achieve high classification accuracy using a novel approach. Finally, the result demonstrates a classification accuracy of 96.42%.\",\"PeriodicalId\":367406,\"journal\":{\"name\":\"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIST58284.2023.10223507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIST58284.2023.10223507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑肿瘤越来越普遍,其特点是大脑中异常组织的不受控制的扩散,全球每年诊断出近70万例新病例。磁共振成像(MRI)通常用于脑肿瘤的诊断,准确的分类是一个关键的临床程序。在这项研究中,我们提出了一种使用自定义迁移学习网络从MRI图像中分类脑肿瘤的有效解决方案。虽然一些研究人员已经采用了各种预训练的架构,如RESNET-50、ALEXNET、VGG-16和VGG-19,但这些方法通常具有很高的计算复杂性。为了解决这个问题,我们提出了一个定制的轻量级模型,使用基于卷积神经网络的预训练架构,降低了复杂性。具体来说,我们采用了带有额外隐藏层的VGG-19架构,这降低了基础架构的复杂性,但提高了计算效率。目标是使用一种新颖的方法实现高分类精度。最终,分类准确率达到96.42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Streamlining Brain Tumor Classification with Custom Transfer Learning in MRI Images
Brain tumors are increasingly prevalent, characterized by the uncontrolled spread of aberrant tissues in the brain, with almost 700,000 new cases diagnosed globally each year. Magnetic Resonance Imaging (MRI) is commonly used for the diagnosis of brain tumors and accurate classification is a critical clinical procedure. In this study, we propose an efficient solution for classifying brain tumors from MRI images using custom transfer learning networks. While several researchers have employed various pre-trained architectures such as RESNET-50, ALEXNET, VGG-16, and VGG-19, these methods often suffer from high computational complexity. To address this issue, we present a custom and lightweight model using a Convolutional Neural Network-based pre-trained architecture with reduced complexity. Specifically, we employ the VGG-19 architecture with additional hidden layers, which reduces the complexity of the base architecture but improves computational efficiency. The objective is to achieve high classification accuracy using a novel approach. Finally, the result demonstrates a classification accuracy of 96.42%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信