使用机器学习api的软件自动化测试

Chengcheng Wan, Shicheng Liu, Sophie Xie, Yifan Liu, H. Hoffmann, M. Maire, Shan Lu
{"title":"使用机器学习api的软件自动化测试","authors":"Chengcheng Wan, Shicheng Liu, Sophie Xie, Yifan Liu, H. Hoffmann, M. Maire, Shan Lu","doi":"10.1145/3510003.3510068","DOIUrl":null,"url":null,"abstract":"An increasing number of software applications incorporate machine learning (ML) solutions for cognitive tasks that statistically mimic human behaviors. To test such software, tremendous human effort is needed to design image/text/audio inputs that are relevant to the software, and to judge whether the software is processing these inputs as most human beings do. Even when misbehavior is exposed, it is often unclear whether the culprit is inside the cognitive ML API or the code using the API. This paper presents Keeper, a new testing tool for software that uses cognitive ML APIs. Keeper designs a pseudo-inverse function for each ML API that reverses the corresponding cognitive task in an empirical way (e.g., an image search engine pseudo-reverses the image-classification API), and incorporates these pseudo-inverse functions into a symbolic execution engine to automatically gener-ate relevant image/text/audio inputs and judge output correctness. Once misbehavior is exposed, Keeper attempts to change how ML APIs are used in software to alleviate the misbehavior. Our evalu-ation on a variety of open-source applications shows that Keeper greatly improves the branch coverage, while identifying many pre-viously unknown bugs.","PeriodicalId":202896,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Automated Testing of Software that Uses Machine Learning APIs\",\"authors\":\"Chengcheng Wan, Shicheng Liu, Sophie Xie, Yifan Liu, H. Hoffmann, M. Maire, Shan Lu\",\"doi\":\"10.1145/3510003.3510068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An increasing number of software applications incorporate machine learning (ML) solutions for cognitive tasks that statistically mimic human behaviors. To test such software, tremendous human effort is needed to design image/text/audio inputs that are relevant to the software, and to judge whether the software is processing these inputs as most human beings do. Even when misbehavior is exposed, it is often unclear whether the culprit is inside the cognitive ML API or the code using the API. This paper presents Keeper, a new testing tool for software that uses cognitive ML APIs. Keeper designs a pseudo-inverse function for each ML API that reverses the corresponding cognitive task in an empirical way (e.g., an image search engine pseudo-reverses the image-classification API), and incorporates these pseudo-inverse functions into a symbolic execution engine to automatically gener-ate relevant image/text/audio inputs and judge output correctness. Once misbehavior is exposed, Keeper attempts to change how ML APIs are used in software to alleviate the misbehavior. Our evalu-ation on a variety of open-source applications shows that Keeper greatly improves the branch coverage, while identifying many pre-viously unknown bugs.\",\"PeriodicalId\":202896,\"journal\":{\"name\":\"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510003.3510068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510003.3510068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

越来越多的软件应用程序将机器学习(ML)解决方案用于统计模拟人类行为的认知任务。为了测试这样的软件,需要大量的人力来设计与软件相关的图像/文本/音频输入,并判断软件是否像大多数人一样处理这些输入。即使不当行为被曝光,通常也不清楚罪魁祸首是在认知ML API内部还是在使用API的代码中。本文介绍了一种新的基于认知机器学习api的软件测试工具Keeper。Keeper为每个ML API设计一个伪逆函数,以经验的方式反转相应的认知任务(例如,图像搜索引擎伪逆图像分类API),并将这些伪逆函数整合到符号执行引擎中,自动生成相关的图像/文本/音频输入并判断输出正确性。一旦不当行为暴露,Keeper会尝试改变ML api在软件中的使用方式,以减轻不当行为。我们对各种开源应用程序的评估表明,Keeper大大提高了分支覆盖率,同时识别了许多以前未知的错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Testing of Software that Uses Machine Learning APIs
An increasing number of software applications incorporate machine learning (ML) solutions for cognitive tasks that statistically mimic human behaviors. To test such software, tremendous human effort is needed to design image/text/audio inputs that are relevant to the software, and to judge whether the software is processing these inputs as most human beings do. Even when misbehavior is exposed, it is often unclear whether the culprit is inside the cognitive ML API or the code using the API. This paper presents Keeper, a new testing tool for software that uses cognitive ML APIs. Keeper designs a pseudo-inverse function for each ML API that reverses the corresponding cognitive task in an empirical way (e.g., an image search engine pseudo-reverses the image-classification API), and incorporates these pseudo-inverse functions into a symbolic execution engine to automatically gener-ate relevant image/text/audio inputs and judge output correctness. Once misbehavior is exposed, Keeper attempts to change how ML APIs are used in software to alleviate the misbehavior. Our evalu-ation on a variety of open-source applications shows that Keeper greatly improves the branch coverage, while identifying many pre-viously unknown bugs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信