{"title":"形式为pqm的非原语单词","authors":"Othman Echi","doi":"10.1051/ita/2017012","DOIUrl":null,"url":null,"abstract":"Let p,q be two distinct primitive words. According to Lentin−Schutzenberger [], the language p + q + contains at most one non-primitive word and if p q m is not primitive, then . In this paper we give a sharper upper bound, namely, where ⌊ x ⌋ stands for the floor of x .","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Non-primitive words of the form pqm\",\"authors\":\"Othman Echi\",\"doi\":\"10.1051/ita/2017012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let p,q be two distinct primitive words. According to Lentin−Schutzenberger [], the language p + q + contains at most one non-primitive word and if p q m is not primitive, then . In this paper we give a sharper upper bound, namely, where ⌊ x ⌋ stands for the floor of x .\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2017012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2017012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let p,q be two distinct primitive words. According to Lentin−Schutzenberger [], the language p + q + contains at most one non-primitive word and if p q m is not primitive, then . In this paper we give a sharper upper bound, namely, where ⌊ x ⌋ stands for the floor of x .