{"title":"基于神经网络和多目标优化的增磁永磁电机优化设计","authors":"Qiang Ai, Hongqian Wei, Youtong Zhang","doi":"10.1109/CVCI51460.2020.9338647","DOIUrl":null,"url":null,"abstract":"The optimization of flux-intensifying interior permanent magnet motor with the reverse salient rotor for electric vehicles is considered and explained. Firstly, the size parameters of an initial motor are selected and then the finite element model is established based on parametric variables. Secondly, to avoid the frequent usage of finite element analysis, a well-trained back propagation neural network model is used to replace the finite element model. Thirdly, the sequential unconstrained minimization technique and non-dominated sorting genetic algorithm-II algorithm are combined together to solve the multi-objective optimization solution with inequality constraints. Finally, the electric machine is reconstructed based on the optimal parameters extracted from Pareto front. The effectiveness of proposed approach is verified by the simulation results.","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal design for Flux-intensifying Permanent Magnet Machine Based on Neural Network and Multi-objective optimization\",\"authors\":\"Qiang Ai, Hongqian Wei, Youtong Zhang\",\"doi\":\"10.1109/CVCI51460.2020.9338647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimization of flux-intensifying interior permanent magnet motor with the reverse salient rotor for electric vehicles is considered and explained. Firstly, the size parameters of an initial motor are selected and then the finite element model is established based on parametric variables. Secondly, to avoid the frequent usage of finite element analysis, a well-trained back propagation neural network model is used to replace the finite element model. Thirdly, the sequential unconstrained minimization technique and non-dominated sorting genetic algorithm-II algorithm are combined together to solve the multi-objective optimization solution with inequality constraints. Finally, the electric machine is reconstructed based on the optimal parameters extracted from Pareto front. The effectiveness of proposed approach is verified by the simulation results.\",\"PeriodicalId\":119721,\"journal\":{\"name\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVCI51460.2020.9338647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal design for Flux-intensifying Permanent Magnet Machine Based on Neural Network and Multi-objective optimization
The optimization of flux-intensifying interior permanent magnet motor with the reverse salient rotor for electric vehicles is considered and explained. Firstly, the size parameters of an initial motor are selected and then the finite element model is established based on parametric variables. Secondly, to avoid the frequent usage of finite element analysis, a well-trained back propagation neural network model is used to replace the finite element model. Thirdly, the sequential unconstrained minimization technique and non-dominated sorting genetic algorithm-II algorithm are combined together to solve the multi-objective optimization solution with inequality constraints. Finally, the electric machine is reconstructed based on the optimal parameters extracted from Pareto front. The effectiveness of proposed approach is verified by the simulation results.