从静息状态fMRI数据预测治疗反应:分割方法的比较

Satrajit S. Ghosh, A. Keshavan, G. Langs
{"title":"从静息状态fMRI数据预测治疗反应:分割方法的比较","authors":"Satrajit S. Ghosh, A. Keshavan, G. Langs","doi":"10.1109/PRNI.2013.64","DOIUrl":null,"url":null,"abstract":"Resting state fMRI reveals intrinsic network characteristics present in the brain. They are correlated with behavioral measures, and have made surprising insights in the brains' connectivity structure possible. At the core of many of those studies is the correlation of behavioral measures, and the characteristics of networks among a set of brain regions. In this paper we evaluate methods that identify functional networks in resting state fMRI in light of predicting treatment response of patients suffering from social anxiety disorder. Results illustrate differences in prediction when obtaining network labelings by population-wide-clustering, subject-specific parcellation, transferring anatomical region labels, or mapping networks from a previous large scale resting state study.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting Treatment Response from Resting State fMRI Data: Comparison of Parcellation Approaches\",\"authors\":\"Satrajit S. Ghosh, A. Keshavan, G. Langs\",\"doi\":\"10.1109/PRNI.2013.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resting state fMRI reveals intrinsic network characteristics present in the brain. They are correlated with behavioral measures, and have made surprising insights in the brains' connectivity structure possible. At the core of many of those studies is the correlation of behavioral measures, and the characteristics of networks among a set of brain regions. In this paper we evaluate methods that identify functional networks in resting state fMRI in light of predicting treatment response of patients suffering from social anxiety disorder. Results illustrate differences in prediction when obtaining network labelings by population-wide-clustering, subject-specific parcellation, transferring anatomical region labels, or mapping networks from a previous large scale resting state study.\",\"PeriodicalId\":144007,\"journal\":{\"name\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2013.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

静息状态功能磁共振成像揭示了大脑中存在的内在网络特征。它们与行为测量相关联,并使对大脑连接结构的惊人见解成为可能。这些研究的核心是行为测量的相关性,以及一组大脑区域之间网络的特征。在本文中,我们评估了在静息状态fMRI中识别功能网络的方法,以预测患有社交焦虑障碍的患者的治疗反应。结果表明,当通过全人群聚类、特定主题分组、转移解剖区域标签或从先前的大规模静息状态研究中绘制网络时,获得网络标记的预测差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Treatment Response from Resting State fMRI Data: Comparison of Parcellation Approaches
Resting state fMRI reveals intrinsic network characteristics present in the brain. They are correlated with behavioral measures, and have made surprising insights in the brains' connectivity structure possible. At the core of many of those studies is the correlation of behavioral measures, and the characteristics of networks among a set of brain regions. In this paper we evaluate methods that identify functional networks in resting state fMRI in light of predicting treatment response of patients suffering from social anxiety disorder. Results illustrate differences in prediction when obtaining network labelings by population-wide-clustering, subject-specific parcellation, transferring anatomical region labels, or mapping networks from a previous large scale resting state study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信