数据流中间语言中无竞争的可变引用的分数权限

M. Cimini, Jeremy G. Siek
{"title":"数据流中间语言中无竞争的可变引用的分数权限","authors":"M. Cimini, Jeremy G. Siek","doi":"10.1145/2957319.2957373","DOIUrl":null,"url":null,"abstract":"ParalleX is an execution model tailored to exascale computing. To this aim, it employs a global shared memory and supports multi-level parallelism. In systems that mix parallelism and mutable shared memory, the definition of a memory model becomes challenging. Following the advice of Adve and Boehm (2010), we balance efficiency and simplicity by going the route of statically enforcing data-race freedom (DRF), which makes sequential consistency efficient to implement on weak memory models. In this paper, we report on a type system that ensures DRF for the core of the dataflow intermediate language used within ParalleX. The type system adapts the notion of fractional permissions to the dataflow context and provides a novel treatment of mutable references, using a combination of affine variables and fractional sums. We give an overview of the type system and demonstrate its use in some examples.","PeriodicalId":316230,"journal":{"name":"First Workshop on Programming Models and Languages for Distributed Computing","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Permissions for Race-Free Mutable References in a Dataflow Intermediate Language\",\"authors\":\"M. Cimini, Jeremy G. Siek\",\"doi\":\"10.1145/2957319.2957373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ParalleX is an execution model tailored to exascale computing. To this aim, it employs a global shared memory and supports multi-level parallelism. In systems that mix parallelism and mutable shared memory, the definition of a memory model becomes challenging. Following the advice of Adve and Boehm (2010), we balance efficiency and simplicity by going the route of statically enforcing data-race freedom (DRF), which makes sequential consistency efficient to implement on weak memory models. In this paper, we report on a type system that ensures DRF for the core of the dataflow intermediate language used within ParalleX. The type system adapts the notion of fractional permissions to the dataflow context and provides a novel treatment of mutable references, using a combination of affine variables and fractional sums. We give an overview of the type system and demonstrate its use in some examples.\",\"PeriodicalId\":316230,\"journal\":{\"name\":\"First Workshop on Programming Models and Languages for Distributed Computing\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First Workshop on Programming Models and Languages for Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2957319.2957373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Workshop on Programming Models and Languages for Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2957319.2957373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

parallelx是为百亿亿次计算量身定制的执行模型。为此,它采用全局共享内存并支持多级并行。在混合并行性和可变共享内存的系统中,内存模型的定义变得具有挑战性。遵循Adve和Boehm(2010)的建议,我们通过静态执行数据竞争自由(DRF)的路线来平衡效率和简单性,这使得顺序一致性在弱内存模型上有效地实现。在本文中,我们报告了一种类型系统,它可以确保在parallelx中使用的数据流中间语言的核心具有DRF。类型系统将分数权限的概念应用于数据流上下文,并使用仿射变量和分数和的组合,为可变引用提供了一种新的处理方法。我们概述了类型系统,并在一些示例中演示了它的用法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Permissions for Race-Free Mutable References in a Dataflow Intermediate Language
ParalleX is an execution model tailored to exascale computing. To this aim, it employs a global shared memory and supports multi-level parallelism. In systems that mix parallelism and mutable shared memory, the definition of a memory model becomes challenging. Following the advice of Adve and Boehm (2010), we balance efficiency and simplicity by going the route of statically enforcing data-race freedom (DRF), which makes sequential consistency efficient to implement on weak memory models. In this paper, we report on a type system that ensures DRF for the core of the dataflow intermediate language used within ParalleX. The type system adapts the notion of fractional permissions to the dataflow context and provides a novel treatment of mutable references, using a combination of affine variables and fractional sums. We give an overview of the type system and demonstrate its use in some examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信