环面形状

R. Krasauskas
{"title":"环面形状","authors":"R. Krasauskas","doi":"10.1109/SCCG.2001.945337","DOIUrl":null,"url":null,"abstract":"We present an informal introduction to the theory of toric surfaces from the viewpoint of geometric modeling. Bezier surfaces and many well-known low-degree rational surfaces are found to be toric. Bezier-like control point schemes for toric surfaces are defined via mixed trigonometric-polynomial parametrizations. Many examples are considered: quadrics, cubic Mobius strip, quartic 'pillow', 'crosscap' and Dupin cyclides. A 'pear' shape modeling is presented.","PeriodicalId":331436,"journal":{"name":"Proceedings Spring Conference on Computer Graphics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Shape of toric surfaces\",\"authors\":\"R. Krasauskas\",\"doi\":\"10.1109/SCCG.2001.945337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an informal introduction to the theory of toric surfaces from the viewpoint of geometric modeling. Bezier surfaces and many well-known low-degree rational surfaces are found to be toric. Bezier-like control point schemes for toric surfaces are defined via mixed trigonometric-polynomial parametrizations. Many examples are considered: quadrics, cubic Mobius strip, quartic 'pillow', 'crosscap' and Dupin cyclides. A 'pear' shape modeling is presented.\",\"PeriodicalId\":331436,\"journal\":{\"name\":\"Proceedings Spring Conference on Computer Graphics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Spring Conference on Computer Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCCG.2001.945337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Spring Conference on Computer Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCG.2001.945337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们从几何建模的角度,非正式地介绍了环面理论。贝塞尔曲面和许多众所周知的低次有理曲面都是环面。通过混合三角-多项式参数化定义了曲面的类贝塞尔控制点格式。考虑了许多例子:二次曲线、立方莫比乌斯带、四次“枕头”、“交叉”和杜平循环。提出了一个“梨”形模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape of toric surfaces
We present an informal introduction to the theory of toric surfaces from the viewpoint of geometric modeling. Bezier surfaces and many well-known low-degree rational surfaces are found to be toric. Bezier-like control point schemes for toric surfaces are defined via mixed trigonometric-polynomial parametrizations. Many examples are considered: quadrics, cubic Mobius strip, quartic 'pillow', 'crosscap' and Dupin cyclides. A 'pear' shape modeling is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信