小波低通滤波器的另一种一般解析结构

Xinshuo Li, Jian-Pin Li, Yuanyan Tang
{"title":"小波低通滤波器的另一种一般解析结构","authors":"Xinshuo Li, Jian-Pin Li, Yuanyan Tang","doi":"10.1109/ICCWAMTIP.2014.7073456","DOIUrl":null,"url":null,"abstract":"The orthogonal wavelet lowpassed filters coefficients with arbitrary length are constructed in this paper. When N=2k and N= 2k-1, the general analytic constructions of orthogonal wavelet filters are put forward, respectively. The famous Daubechies filter and many other wavelet filters are tested by the proposed novel method, which is very useful for wavelet theory research and many applications areas such as pattern recognition.","PeriodicalId":211273,"journal":{"name":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Another general analytic construction for wavelet lowpassed filters\",\"authors\":\"Xinshuo Li, Jian-Pin Li, Yuanyan Tang\",\"doi\":\"10.1109/ICCWAMTIP.2014.7073456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The orthogonal wavelet lowpassed filters coefficients with arbitrary length are constructed in this paper. When N=2k and N= 2k-1, the general analytic constructions of orthogonal wavelet filters are put forward, respectively. The famous Daubechies filter and many other wavelet filters are tested by the proposed novel method, which is very useful for wavelet theory research and many applications areas such as pattern recognition.\",\"PeriodicalId\":211273,\"journal\":{\"name\":\"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP.2014.7073456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2014.7073456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文构造了任意长度的正交小波低通滤波器系数。当N=2k和N=2k -1时,分别给出了正交小波滤波器的一般解析结构。该方法对著名的Daubechies滤波器和许多其他小波滤波器进行了测试,对小波理论研究和模式识别等许多应用领域具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Another general analytic construction for wavelet lowpassed filters
The orthogonal wavelet lowpassed filters coefficients with arbitrary length are constructed in this paper. When N=2k and N= 2k-1, the general analytic constructions of orthogonal wavelet filters are put forward, respectively. The famous Daubechies filter and many other wavelet filters are tested by the proposed novel method, which is very useful for wavelet theory research and many applications areas such as pattern recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信