{"title":"基于判别典型相关分析的情感识别特征融合研究","authors":"Chuqi Liu, C. Li, Ziping Zhao","doi":"10.1145/3208788.3208804","DOIUrl":null,"url":null,"abstract":"With the rapid development of emotion recognition, emotion recognition based on EEG signals and physiological signals has drawn much attention from researchers. However, due to the consistency of multi-source information in emotional expression, emotion recognition based on single modal information is still unsatisfactory. Therefore, we proposed a feature fusion algorithm based on Discriminative Canonical correlation analysis, two modes are dealt with simultaneously, the correlation between the two classes of samples is taken as a similarity measure, introduced the class information of the sample, Fully consider the correlation between similar samples and the correlation between different samples. We use the DEAP database and use the DCCA method to fuse the physiological signals and the EEG signals, which greatly improves the classification effect. The classification of liking dimension is 68.21%, which is about 10% higher than other methods and about 2% higher than the CCA model.","PeriodicalId":211585,"journal":{"name":"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research on feature fusion for emotion recognition based on discriminative canonical correlation analysis\",\"authors\":\"Chuqi Liu, C. Li, Ziping Zhao\",\"doi\":\"10.1145/3208788.3208804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of emotion recognition, emotion recognition based on EEG signals and physiological signals has drawn much attention from researchers. However, due to the consistency of multi-source information in emotional expression, emotion recognition based on single modal information is still unsatisfactory. Therefore, we proposed a feature fusion algorithm based on Discriminative Canonical correlation analysis, two modes are dealt with simultaneously, the correlation between the two classes of samples is taken as a similarity measure, introduced the class information of the sample, Fully consider the correlation between similar samples and the correlation between different samples. We use the DEAP database and use the DCCA method to fuse the physiological signals and the EEG signals, which greatly improves the classification effect. The classification of liking dimension is 68.21%, which is about 10% higher than other methods and about 2% higher than the CCA model.\",\"PeriodicalId\":211585,\"journal\":{\"name\":\"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208788.3208804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208788.3208804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on feature fusion for emotion recognition based on discriminative canonical correlation analysis
With the rapid development of emotion recognition, emotion recognition based on EEG signals and physiological signals has drawn much attention from researchers. However, due to the consistency of multi-source information in emotional expression, emotion recognition based on single modal information is still unsatisfactory. Therefore, we proposed a feature fusion algorithm based on Discriminative Canonical correlation analysis, two modes are dealt with simultaneously, the correlation between the two classes of samples is taken as a similarity measure, introduced the class information of the sample, Fully consider the correlation between similar samples and the correlation between different samples. We use the DEAP database and use the DCCA method to fuse the physiological signals and the EEG signals, which greatly improves the classification effect. The classification of liking dimension is 68.21%, which is about 10% higher than other methods and about 2% higher than the CCA model.