从社交网络文档中发现时间社区

Ding Zhou, Isaac G. Councill, H. Zha, C. Lee Giles
{"title":"从社交网络文档中发现时间社区","authors":"Ding Zhou, Isaac G. Councill, H. Zha, C. Lee Giles","doi":"10.1109/ICDM.2007.56","DOIUrl":null,"url":null,"abstract":"This paper studies the discovery of communities from social network documents produced over time, addressing the discovery of temporal trends in community memberships. We first formulate static community discovery at a single time period as a tripartite graph partitioning problem. Then we propose to discover the temporal communities by threading the statically derived communities in different time periods using a new constrained partitioning algorithm, which partitions graphs based on topology as well as prior information regarding vertex membership. We evaluate the proposed approach on synthetic datasets and a real-world dataset prepared from the CiteSeer.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Discovering Temporal Communities from Social Network Documents\",\"authors\":\"Ding Zhou, Isaac G. Councill, H. Zha, C. Lee Giles\",\"doi\":\"10.1109/ICDM.2007.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the discovery of communities from social network documents produced over time, addressing the discovery of temporal trends in community memberships. We first formulate static community discovery at a single time period as a tripartite graph partitioning problem. Then we propose to discover the temporal communities by threading the statically derived communities in different time periods using a new constrained partitioning algorithm, which partitions graphs based on topology as well as prior information regarding vertex membership. We evaluate the proposed approach on synthetic datasets and a real-world dataset prepared from the CiteSeer.\",\"PeriodicalId\":233758,\"journal\":{\"name\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2007.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

摘要

本文研究了随着时间的推移而产生的社交网络文档中社区的发现,解决了社区成员的时间趋势的发现。我们首先将单个时间段的静态社区发现表述为一个三方图划分问题。然后,我们提出了一种新的约束分区算法,该算法基于拓扑和顶点隶属度的先验信息对图进行分区,通过线程化不同时间段的静态派生社区来发现时间社区。我们在合成数据集和CiteSeer准备的真实数据集上评估了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering Temporal Communities from Social Network Documents
This paper studies the discovery of communities from social network documents produced over time, addressing the discovery of temporal trends in community memberships. We first formulate static community discovery at a single time period as a tripartite graph partitioning problem. Then we propose to discover the temporal communities by threading the statically derived communities in different time periods using a new constrained partitioning algorithm, which partitions graphs based on topology as well as prior information regarding vertex membership. We evaluate the proposed approach on synthetic datasets and a real-world dataset prepared from the CiteSeer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信