一种环型ILFD,具有正交输出,除4锁定范围为91%,除8锁定范围为40%

Najmeh Hajamini, M. Yavari
{"title":"一种环型ILFD,具有正交输出,除4锁定范围为91%,除8锁定范围为40%","authors":"Najmeh Hajamini, M. Yavari","doi":"10.1109/IRANIANCEE.2013.6599742","DOIUrl":null,"url":null,"abstract":"In this paper, a low-power, wide locking range and quadrature output divide-by-4 and divide-by-8 ring-type injection-locked frequency divider (ILFD) is proposed. Two techniques are implemented in a two-stage ring ILFD to provide wide locking range and low power consumption at the same time. To widen the bandwidth, a common-gate tail configuration for injecting the signal is employed. Furthermore, the common-source node sharing topology is used to increase the operating frequency of the ILFD. This ILFD is designed in a 90 nm CMOS technology. Simulation results show that the proposed ILFD can provide the locking range of 91% for divide-by-4 and 40% for divide-by-8 at the incident power of -5 dBm and -10 dBm, respectively. It consumes about 1.57 mW at a supply voltage of 1.2 V.","PeriodicalId":383315,"journal":{"name":"2013 21st Iranian Conference on Electrical Engineering (ICEE)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A ring-type ILFD with locking range of 91% for divide-by-4 and 40% for divide-by-8 with quadrature outputs\",\"authors\":\"Najmeh Hajamini, M. Yavari\",\"doi\":\"10.1109/IRANIANCEE.2013.6599742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a low-power, wide locking range and quadrature output divide-by-4 and divide-by-8 ring-type injection-locked frequency divider (ILFD) is proposed. Two techniques are implemented in a two-stage ring ILFD to provide wide locking range and low power consumption at the same time. To widen the bandwidth, a common-gate tail configuration for injecting the signal is employed. Furthermore, the common-source node sharing topology is used to increase the operating frequency of the ILFD. This ILFD is designed in a 90 nm CMOS technology. Simulation results show that the proposed ILFD can provide the locking range of 91% for divide-by-4 and 40% for divide-by-8 at the incident power of -5 dBm and -10 dBm, respectively. It consumes about 1.57 mW at a supply voltage of 1.2 V.\",\"PeriodicalId\":383315,\"journal\":{\"name\":\"2013 21st Iranian Conference on Electrical Engineering (ICEE)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 21st Iranian Conference on Electrical Engineering (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANCEE.2013.6599742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2013.6599742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种低功耗、宽锁定范围、正交输出的分频器,分频器分为4分频器和8分频器。两种技术在两级环形ILFD中实现,同时提供宽锁定范围和低功耗。为了扩大带宽,采用共门尾结构注入信号。此外,采用了多源节点共享的拓扑结构,提高了ILFD的工作频率。该ILFD采用90纳米CMOS技术设计。仿真结果表明,在入射功率为-5 dBm和-10 dBm时,所提出的ILFD可分别提供91%和40%的除4和除8锁相范围。在1.2 V的供电电压下,它的功耗约为1.57 mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A ring-type ILFD with locking range of 91% for divide-by-4 and 40% for divide-by-8 with quadrature outputs
In this paper, a low-power, wide locking range and quadrature output divide-by-4 and divide-by-8 ring-type injection-locked frequency divider (ILFD) is proposed. Two techniques are implemented in a two-stage ring ILFD to provide wide locking range and low power consumption at the same time. To widen the bandwidth, a common-gate tail configuration for injecting the signal is employed. Furthermore, the common-source node sharing topology is used to increase the operating frequency of the ILFD. This ILFD is designed in a 90 nm CMOS technology. Simulation results show that the proposed ILFD can provide the locking range of 91% for divide-by-4 and 40% for divide-by-8 at the incident power of -5 dBm and -10 dBm, respectively. It consumes about 1.57 mW at a supply voltage of 1.2 V.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信