约束轨迹平滑的凸可行集算法

Changliu Liu, Chung-Yen Lin, Yizhou Wang, M. Tomizuka
{"title":"约束轨迹平滑的凸可行集算法","authors":"Changliu Liu, Chung-Yen Lin, Yizhou Wang, M. Tomizuka","doi":"10.23919/ACC.2017.7963597","DOIUrl":null,"url":null,"abstract":"Trajectory smoothing is an important step in robot motion planning, where optimization methods are usually employed. However, the optimization problem for trajectory smoothing in a clustered environment is highly non-convex, and is hard to solve in real time using conventional non-convex optimization solvers. This paper discusses a fast online optimization algorithm for trajectory smoothing, which transforms the original non-convex problem to a convex problem so that it can be solved efficiently online. The performance of the algorithm is illustrated in various cases, and is compared to that of conventional sequential quadratic programming (SQP). It is shown that the computation time is greatly reduced using the proposed algorithm.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Convex feasible set algorithm for constrained trajectory smoothing\",\"authors\":\"Changliu Liu, Chung-Yen Lin, Yizhou Wang, M. Tomizuka\",\"doi\":\"10.23919/ACC.2017.7963597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trajectory smoothing is an important step in robot motion planning, where optimization methods are usually employed. However, the optimization problem for trajectory smoothing in a clustered environment is highly non-convex, and is hard to solve in real time using conventional non-convex optimization solvers. This paper discusses a fast online optimization algorithm for trajectory smoothing, which transforms the original non-convex problem to a convex problem so that it can be solved efficiently online. The performance of the algorithm is illustrated in various cases, and is compared to that of conventional sequential quadratic programming (SQP). It is shown that the computation time is greatly reduced using the proposed algorithm.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

轨迹平滑是机器人运动规划的重要步骤,通常采用优化方法。然而,聚类环境下的轨迹平滑优化问题具有高度的非凸性,使用传统的非凸优化求解方法难以实时求解。本文讨论了一种快速的轨迹平滑在线优化算法,该算法将原非凸问题转化为凸问题,使其能够在线高效求解。在各种情况下说明了该算法的性能,并与传统的顺序二次规划(SQP)进行了比较。结果表明,该算法大大缩短了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convex feasible set algorithm for constrained trajectory smoothing
Trajectory smoothing is an important step in robot motion planning, where optimization methods are usually employed. However, the optimization problem for trajectory smoothing in a clustered environment is highly non-convex, and is hard to solve in real time using conventional non-convex optimization solvers. This paper discusses a fast online optimization algorithm for trajectory smoothing, which transforms the original non-convex problem to a convex problem so that it can be solved efficiently online. The performance of the algorithm is illustrated in various cases, and is compared to that of conventional sequential quadratic programming (SQP). It is shown that the computation time is greatly reduced using the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信