{"title":"奇摄动反应扩散系统脉冲稳定性控制","authors":"Frits Veerman, I. Schneider","doi":"10.1063/5.0152695","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to investigate the use of Pyragas control on the stability of stationary, localized coherent structures in a general class of two-component, singularly perturbed, reaction-diffusion systems. We use noninvasive Pyragas-like proportional feedback control to stabilize a singular pulse solution to a two-component, singularly perturbed reaction-diffusion system. We show that in a significant region of parameter space, the control can be adjusted to stabilize an otherwise unstable pulse.","PeriodicalId":340975,"journal":{"name":"Chaos: An Interdisciplinary Journal of Nonlinear Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling pulse stability in singularly perturbed reaction-diffusion systems\",\"authors\":\"Frits Veerman, I. Schneider\",\"doi\":\"10.1063/5.0152695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to investigate the use of Pyragas control on the stability of stationary, localized coherent structures in a general class of two-component, singularly perturbed, reaction-diffusion systems. We use noninvasive Pyragas-like proportional feedback control to stabilize a singular pulse solution to a two-component, singularly perturbed reaction-diffusion system. We show that in a significant region of parameter space, the control can be adjusted to stabilize an otherwise unstable pulse.\",\"PeriodicalId\":340975,\"journal\":{\"name\":\"Chaos: An Interdisciplinary Journal of Nonlinear Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos: An Interdisciplinary Journal of Nonlinear Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0152695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos: An Interdisciplinary Journal of Nonlinear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0152695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Controlling pulse stability in singularly perturbed reaction-diffusion systems
The aim of this paper is to investigate the use of Pyragas control on the stability of stationary, localized coherent structures in a general class of two-component, singularly perturbed, reaction-diffusion systems. We use noninvasive Pyragas-like proportional feedback control to stabilize a singular pulse solution to a two-component, singularly perturbed reaction-diffusion system. We show that in a significant region of parameter space, the control can be adjusted to stabilize an otherwise unstable pulse.