使用概率数据关联的Turbo均衡

Yufang Yin, Yufei Huang, Jianqiu Zhang
{"title":"使用概率数据关联的Turbo均衡","authors":"Yufang Yin, Yufei Huang, Jianqiu Zhang","doi":"10.1109/glocom.2004.1378463","DOIUrl":null,"url":null,"abstract":"We investigate turbo equalization using an algorithm called probabilistic data association (PDA). We first propose a general structure for PDA, which consists of a linear interference cancellation step followed by a probabilistic data association step in every iteration. Based on the general structure, we show that the original PDA belongs to one variation and it is computationally inefficient. We then unveil that the popular soft linear MMSE (SLMMSE) equalizer can be considered as one sweep within a generalized PDA. Such a connection implies that further performance improvement over the SLMMSE equalizer is possible if the PDA is applied instead in turbo equalization. We also provide a way for the PDA equalizer to incorporate the a priori probability, which makes the PDA readily applicable to turbo equalization.","PeriodicalId":162046,"journal":{"name":"IEEE Global Telecommunications Conference, 2004. GLOBECOM '04.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Turbo equalization using probabilistic data association\",\"authors\":\"Yufang Yin, Yufei Huang, Jianqiu Zhang\",\"doi\":\"10.1109/glocom.2004.1378463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate turbo equalization using an algorithm called probabilistic data association (PDA). We first propose a general structure for PDA, which consists of a linear interference cancellation step followed by a probabilistic data association step in every iteration. Based on the general structure, we show that the original PDA belongs to one variation and it is computationally inefficient. We then unveil that the popular soft linear MMSE (SLMMSE) equalizer can be considered as one sweep within a generalized PDA. Such a connection implies that further performance improvement over the SLMMSE equalizer is possible if the PDA is applied instead in turbo equalization. We also provide a way for the PDA equalizer to incorporate the a priori probability, which makes the PDA readily applicable to turbo equalization.\",\"PeriodicalId\":162046,\"journal\":{\"name\":\"IEEE Global Telecommunications Conference, 2004. GLOBECOM '04.\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Global Telecommunications Conference, 2004. GLOBECOM '04.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/glocom.2004.1378463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Global Telecommunications Conference, 2004. GLOBECOM '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/glocom.2004.1378463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们使用一种称为概率数据关联(PDA)的算法来研究涡轮均衡。我们首先提出了一种PDA的一般结构,该结构由线性干扰消除步骤和每次迭代的概率数据关联步骤组成。在一般结构的基础上,我们发现原来的PDA属于一个变体,计算效率很低。然后,我们揭示了流行的软线性MMSE (SLMMSE)均衡器可以被视为广义PDA中的一次扫描。这样的连接意味着,如果在涡轮均衡中应用PDA,则可以进一步提高SLMMSE均衡器的性能。我们还提供了一种方法,使PDA均衡器纳入先验概率,这使得PDA很容易适用于涡轮均衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turbo equalization using probabilistic data association
We investigate turbo equalization using an algorithm called probabilistic data association (PDA). We first propose a general structure for PDA, which consists of a linear interference cancellation step followed by a probabilistic data association step in every iteration. Based on the general structure, we show that the original PDA belongs to one variation and it is computationally inefficient. We then unveil that the popular soft linear MMSE (SLMMSE) equalizer can be considered as one sweep within a generalized PDA. Such a connection implies that further performance improvement over the SLMMSE equalizer is possible if the PDA is applied instead in turbo equalization. We also provide a way for the PDA equalizer to incorporate the a priori probability, which makes the PDA readily applicable to turbo equalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信