基于BLE信标的远程空间实时拥塞预测

Taiki Iwao, S. Fujita
{"title":"基于BLE信标的远程空间实时拥塞预测","authors":"Taiki Iwao, S. Fujita","doi":"10.1109/CANDARW51189.2020.00018","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a system which forecasts the degree of congestions in a given space without actually visiting there. The proposed system is based on an assumption such that the arrival and departure of users concerned with the target space follows a specific probability distribution such as Gaussian mixture distribution and Poisson distribution. The system estimates parameters of the underlying probability distribution from time-series data reflecting the movement of users, and forecasts the degree of congestions at a certain time in the near future by using estimated parameters. The experimental results based on actual data acquired in a classroom of university show that the accuracy of parameter estimation could be comparable to that for complete data by filling missing future part with dummy data generated according to an appropriate normal distribution.","PeriodicalId":127873,"journal":{"name":"International Symposium on Computing and Networking - Across Practical Development and Theoretical Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realtime Congestion Forecasting of Remote Space Through BLE Beacons\",\"authors\":\"Taiki Iwao, S. Fujita\",\"doi\":\"10.1109/CANDARW51189.2020.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a system which forecasts the degree of congestions in a given space without actually visiting there. The proposed system is based on an assumption such that the arrival and departure of users concerned with the target space follows a specific probability distribution such as Gaussian mixture distribution and Poisson distribution. The system estimates parameters of the underlying probability distribution from time-series data reflecting the movement of users, and forecasts the degree of congestions at a certain time in the near future by using estimated parameters. The experimental results based on actual data acquired in a classroom of university show that the accuracy of parameter estimation could be comparable to that for complete data by filling missing future part with dummy data generated according to an appropriate normal distribution.\",\"PeriodicalId\":127873,\"journal\":{\"name\":\"International Symposium on Computing and Networking - Across Practical Development and Theoretical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Computing and Networking - Across Practical Development and Theoretical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CANDARW51189.2020.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Computing and Networking - Across Practical Development and Theoretical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CANDARW51189.2020.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realtime Congestion Forecasting of Remote Space Through BLE Beacons
In this paper, we propose a system which forecasts the degree of congestions in a given space without actually visiting there. The proposed system is based on an assumption such that the arrival and departure of users concerned with the target space follows a specific probability distribution such as Gaussian mixture distribution and Poisson distribution. The system estimates parameters of the underlying probability distribution from time-series data reflecting the movement of users, and forecasts the degree of congestions at a certain time in the near future by using estimated parameters. The experimental results based on actual data acquired in a classroom of university show that the accuracy of parameter estimation could be comparable to that for complete data by filling missing future part with dummy data generated according to an appropriate normal distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信