以人为中心的机器翻译模型和任务

Marine Carpuat
{"title":"以人为中心的机器翻译模型和任务","authors":"Marine Carpuat","doi":"10.26615/978-954-452-073-1_001","DOIUrl":null,"url":null,"abstract":"In this talk, I will describe current research directions in my group that aim to make machine translation (MT) more human-centered. Instead of viewing MT solely as a task that aims to transduce a source sentence into a well-formed target language equivalent, we revisit all steps of the MT research and development lifecycle with the goal of designing MT systems that are able to help people communicate across language barriers. I will present methods to better characterize the parallel training data that powers MT systems, and how the degree of equivalence impacts translation quality. I will introduce models that enable flexible conditional language generation, and will discuss recent work on framing machine translation tasks and evaluation to center human factors.","PeriodicalId":114625,"journal":{"name":"Proceedings of the FirstWorkshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Models and Tasks for Human-Centered Machine Translation\",\"authors\":\"Marine Carpuat\",\"doi\":\"10.26615/978-954-452-073-1_001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this talk, I will describe current research directions in my group that aim to make machine translation (MT) more human-centered. Instead of viewing MT solely as a task that aims to transduce a source sentence into a well-formed target language equivalent, we revisit all steps of the MT research and development lifecycle with the goal of designing MT systems that are able to help people communicate across language barriers. I will present methods to better characterize the parallel training data that powers MT systems, and how the degree of equivalence impacts translation quality. I will introduce models that enable flexible conditional language generation, and will discuss recent work on framing machine translation tasks and evaluation to center human factors.\",\"PeriodicalId\":114625,\"journal\":{\"name\":\"Proceedings of the FirstWorkshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the FirstWorkshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26615/978-954-452-073-1_001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the FirstWorkshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-073-1_001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这次演讲中,我将描述我的小组目前的研究方向,旨在使机器翻译(MT)更加以人为中心。与其将机器翻译视为一项旨在将源句子翻译成格式良好的目标语言的任务,我们回顾了机器翻译研究和开发生命周期的所有步骤,目标是设计能够帮助人们跨越语言障碍进行交流的机器翻译系统。我将介绍一些方法来更好地描述为机器翻译系统提供动力的并行训练数据,以及等效程度如何影响翻译质量。我将介绍能够灵活条件语言生成的模型,并将讨论最近在框架机器翻译任务和评估方面的工作,以中心人为因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Models and Tasks for Human-Centered Machine Translation
In this talk, I will describe current research directions in my group that aim to make machine translation (MT) more human-centered. Instead of viewing MT solely as a task that aims to transduce a source sentence into a well-formed target language equivalent, we revisit all steps of the MT research and development lifecycle with the goal of designing MT systems that are able to help people communicate across language barriers. I will present methods to better characterize the parallel training data that powers MT systems, and how the degree of equivalence impacts translation quality. I will introduce models that enable flexible conditional language generation, and will discuss recent work on framing machine translation tasks and evaluation to center human factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信