{"title":"基于量子电容效应的石墨烯纳米卷电导建模","authors":"M. Khaledian, Razali Ismail","doi":"10.1117/12.2202579","DOIUrl":null,"url":null,"abstract":"Graphene nanoscrolls (GNSs) as a new category of quasi one dimensional belong to the carbon-based nanomaterials, which have recently captivated the attention of researchers. The latest discoveries of exceptional structural and electronic properties of GNSs like, high mobility, controllable band gap and tunable core size has become a new stimuli for nanotechnology researchers. Fundamental descriptions about structure and electronic properties of GNSs have been investigated in order to apply them in nanoelectronic applications like nanotransistors and nanosensors as a new semiconducting material. By utilizing a novel approach, the analytical conductance model (G) of GNSs with the effect of Hall quantum is derived. This letter introduces a geometrydependent model to analyze the conductance of GNSs. The conductance modeling of GNS in parabolic part of the band structure which displays minimum conductance near the charge neutrality point is calculated. Subsequently, the effect of temperature and physical parameters on GNS conductivity is studied. This study emphasized that the GNS is a promising candidate for new generation of nanoelectronic devices.","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling of graphene nanoscroll conductance with quantum capacitance effect\",\"authors\":\"M. Khaledian, Razali Ismail\",\"doi\":\"10.1117/12.2202579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene nanoscrolls (GNSs) as a new category of quasi one dimensional belong to the carbon-based nanomaterials, which have recently captivated the attention of researchers. The latest discoveries of exceptional structural and electronic properties of GNSs like, high mobility, controllable band gap and tunable core size has become a new stimuli for nanotechnology researchers. Fundamental descriptions about structure and electronic properties of GNSs have been investigated in order to apply them in nanoelectronic applications like nanotransistors and nanosensors as a new semiconducting material. By utilizing a novel approach, the analytical conductance model (G) of GNSs with the effect of Hall quantum is derived. This letter introduces a geometrydependent model to analyze the conductance of GNSs. The conductance modeling of GNS in parabolic part of the band structure which displays minimum conductance near the charge neutrality point is calculated. Subsequently, the effect of temperature and physical parameters on GNS conductivity is studied. This study emphasized that the GNS is a promising candidate for new generation of nanoelectronic devices.\",\"PeriodicalId\":320411,\"journal\":{\"name\":\"SPIE Micro + Nano Materials, Devices, and Applications\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Micro + Nano Materials, Devices, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2202579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Micro + Nano Materials, Devices, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2202579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling of graphene nanoscroll conductance with quantum capacitance effect
Graphene nanoscrolls (GNSs) as a new category of quasi one dimensional belong to the carbon-based nanomaterials, which have recently captivated the attention of researchers. The latest discoveries of exceptional structural and electronic properties of GNSs like, high mobility, controllable band gap and tunable core size has become a new stimuli for nanotechnology researchers. Fundamental descriptions about structure and electronic properties of GNSs have been investigated in order to apply them in nanoelectronic applications like nanotransistors and nanosensors as a new semiconducting material. By utilizing a novel approach, the analytical conductance model (G) of GNSs with the effect of Hall quantum is derived. This letter introduces a geometrydependent model to analyze the conductance of GNSs. The conductance modeling of GNS in parabolic part of the band structure which displays minimum conductance near the charge neutrality point is calculated. Subsequently, the effect of temperature and physical parameters on GNS conductivity is studied. This study emphasized that the GNS is a promising candidate for new generation of nanoelectronic devices.