{"title":"基于神经网络的多视角异常预测","authors":"A. Waibel, A. Alshehri, Soundararajan Ezekiel","doi":"10.1109/AIPR.2013.6749341","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a technique for predicting anomalies in a signal by observing relationships between multiple meaningful transformations of the signal called perspectives. In particular, we use the Fourier transform to provide a holistic view of the frequencies present in a signal, along with a wavelet denoised signal that is filtered to locate anomalous peaks. Then we input these perspectives of the signal into a feedforward neural network technique to recognize patterns in the relationship between perspectives, and the presence of anomalies. The neural network is trained using a supervised learning algorithm for a given data set. Once trained, the neural network outputs the probability of a significant event occurring later in the signal based on anomalies occurring in the early part of the signal. A large collection of seismic signals was used in this study to illustrate the underlying methodology. Using this method we were able to achieve 54.7% accuracy in predicting anomalies further in a seismic signal. The techniques we present in this paper, with some refinement, can readily be applied to detect anomalies in seismic, electrocardiogram, electroencephalogram, and other non-stationary signals.","PeriodicalId":435620,"journal":{"name":"2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multi-perspective anomaly prediction using neural networks\",\"authors\":\"A. Waibel, A. Alshehri, Soundararajan Ezekiel\",\"doi\":\"10.1109/AIPR.2013.6749341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a technique for predicting anomalies in a signal by observing relationships between multiple meaningful transformations of the signal called perspectives. In particular, we use the Fourier transform to provide a holistic view of the frequencies present in a signal, along with a wavelet denoised signal that is filtered to locate anomalous peaks. Then we input these perspectives of the signal into a feedforward neural network technique to recognize patterns in the relationship between perspectives, and the presence of anomalies. The neural network is trained using a supervised learning algorithm for a given data set. Once trained, the neural network outputs the probability of a significant event occurring later in the signal based on anomalies occurring in the early part of the signal. A large collection of seismic signals was used in this study to illustrate the underlying methodology. Using this method we were able to achieve 54.7% accuracy in predicting anomalies further in a seismic signal. The techniques we present in this paper, with some refinement, can readily be applied to detect anomalies in seismic, electrocardiogram, electroencephalogram, and other non-stationary signals.\",\"PeriodicalId\":435620,\"journal\":{\"name\":\"2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2013.6749341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2013.6749341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-perspective anomaly prediction using neural networks
In this paper, we introduce a technique for predicting anomalies in a signal by observing relationships between multiple meaningful transformations of the signal called perspectives. In particular, we use the Fourier transform to provide a holistic view of the frequencies present in a signal, along with a wavelet denoised signal that is filtered to locate anomalous peaks. Then we input these perspectives of the signal into a feedforward neural network technique to recognize patterns in the relationship between perspectives, and the presence of anomalies. The neural network is trained using a supervised learning algorithm for a given data set. Once trained, the neural network outputs the probability of a significant event occurring later in the signal based on anomalies occurring in the early part of the signal. A large collection of seismic signals was used in this study to illustrate the underlying methodology. Using this method we were able to achieve 54.7% accuracy in predicting anomalies further in a seismic signal. The techniques we present in this paper, with some refinement, can readily be applied to detect anomalies in seismic, electrocardiogram, electroencephalogram, and other non-stationary signals.