HMaViz:用于视觉推荐的人机分析

Ngan V. T. Nguyen, Vung V. Pham, Tommy Dang
{"title":"HMaViz:用于视觉推荐的人机分析","authors":"Ngan V. T. Nguyen, Vung V. Pham, Tommy Dang","doi":"10.1145/3468784.3471601","DOIUrl":null,"url":null,"abstract":"Visualizations are context-specific. Understanding the context of visualizations before deciding to use them is a daunting task since users have various backgrounds, and there are thousands of available visual representations (and their variances). To this end, this paper proposes a visual analytics framework to achieve the following research goals: (1) to automatically generate a number of suitable representations for visualizing the input data and present it to users as a catalog of visualizations with different levels of abstractions and data characteristics on one/two/multi-dimensional spaces (2) to infer aspects of the user’s interest based on their interactions (3) to narrow down a smaller set of visualizations that suit users analysis intention. The results of this process give our analytics system the means to better understand the user’s analysis process and enable it to better provide timely recommendations.","PeriodicalId":341589,"journal":{"name":"The 12th International Conference on Advances in Information Technology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HMaViz: Human-machine analytics for visual recommendation\",\"authors\":\"Ngan V. T. Nguyen, Vung V. Pham, Tommy Dang\",\"doi\":\"10.1145/3468784.3471601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visualizations are context-specific. Understanding the context of visualizations before deciding to use them is a daunting task since users have various backgrounds, and there are thousands of available visual representations (and their variances). To this end, this paper proposes a visual analytics framework to achieve the following research goals: (1) to automatically generate a number of suitable representations for visualizing the input data and present it to users as a catalog of visualizations with different levels of abstractions and data characteristics on one/two/multi-dimensional spaces (2) to infer aspects of the user’s interest based on their interactions (3) to narrow down a smaller set of visualizations that suit users analysis intention. The results of this process give our analytics system the means to better understand the user’s analysis process and enable it to better provide timely recommendations.\",\"PeriodicalId\":341589,\"journal\":{\"name\":\"The 12th International Conference on Advances in Information Technology\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 12th International Conference on Advances in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3468784.3471601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th International Conference on Advances in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468784.3471601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可视化是特定于上下文的。在决定使用可视化之前,理解它们的上下文是一项艰巨的任务,因为用户具有不同的背景,并且有数千种可用的可视化表示(及其差异)。为此,本文提出了可视化分析框架,以实现以下研究目标:(1)自动生成一些适合可视化输入数据的表示,并将其作为在一维/二维/多维空间上具有不同抽象级别和数据特征的可视化目录呈现给用户(2)根据用户的交互推断用户感兴趣的方面(3)缩小适合用户分析意图的较小的可视化集合。这个过程的结果使我们的分析系统能够更好地理解用户的分析过程,并使其能够更好地提供及时的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HMaViz: Human-machine analytics for visual recommendation
Visualizations are context-specific. Understanding the context of visualizations before deciding to use them is a daunting task since users have various backgrounds, and there are thousands of available visual representations (and their variances). To this end, this paper proposes a visual analytics framework to achieve the following research goals: (1) to automatically generate a number of suitable representations for visualizing the input data and present it to users as a catalog of visualizations with different levels of abstractions and data characteristics on one/two/multi-dimensional spaces (2) to infer aspects of the user’s interest based on their interactions (3) to narrow down a smaller set of visualizations that suit users analysis intention. The results of this process give our analytics system the means to better understand the user’s analysis process and enable it to better provide timely recommendations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信