实时问答的动态密集-稀疏表示

Minyu Sun, Bin Jiang, Chao Yang
{"title":"实时问答的动态密集-稀疏表示","authors":"Minyu Sun, Bin Jiang, Chao Yang","doi":"10.1109/ICME55011.2023.00250","DOIUrl":null,"url":null,"abstract":"Existing real-time question answering models have shown speed benefits on open-domain tasks. However, they possess limited phrase representations and are susceptible to information loss, which leads to low accuracy. In this paper, we propose modified contextualized sparse and dense encoders to improve the context embedding quality. For sparse encoding, we propose the JM-Sparse, which utilizes joint multi-head attention to focus on crucial information in different context locations and subsequently learn sparse vectors within an n-gram vocabulary space. Moreover, we leverage the similarity-enhanced dense(SE-Dense) vector to obtain rich contextual dense representations. To effectively combine dense and sparse features, we train the weights of dense and sparse vectors dynamically. Extensive experiments on standard benchmarks demonstrate the effectiveness of the proposed method compared with other query-agnostic models.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Dense-Sparse Representations for Real-Time Question Answering\",\"authors\":\"Minyu Sun, Bin Jiang, Chao Yang\",\"doi\":\"10.1109/ICME55011.2023.00250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing real-time question answering models have shown speed benefits on open-domain tasks. However, they possess limited phrase representations and are susceptible to information loss, which leads to low accuracy. In this paper, we propose modified contextualized sparse and dense encoders to improve the context embedding quality. For sparse encoding, we propose the JM-Sparse, which utilizes joint multi-head attention to focus on crucial information in different context locations and subsequently learn sparse vectors within an n-gram vocabulary space. Moreover, we leverage the similarity-enhanced dense(SE-Dense) vector to obtain rich contextual dense representations. To effectively combine dense and sparse features, we train the weights of dense and sparse vectors dynamically. Extensive experiments on standard benchmarks demonstrate the effectiveness of the proposed method compared with other query-agnostic models.\",\"PeriodicalId\":321830,\"journal\":{\"name\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME55011.2023.00250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的实时问答模型在开放域任务上显示出速度优势。然而,它们具有有限的短语表示,易受信息丢失的影响,导致准确性低。在本文中,我们提出了改进的上下文化稀疏和密集编码器来提高上下文嵌入质量。对于稀疏编码,我们提出了JM-Sparse,它利用联合多头注意力来关注不同上下文位置的关键信息,然后在n-gram词汇空间内学习稀疏向量。此外,我们利用相似性增强密集(SE-Dense)向量来获得丰富的上下文密集表示。为了有效地结合密集和稀疏特征,我们动态地训练密集和稀疏向量的权值。在标准基准测试上的大量实验表明,与其他查询无关模型相比,所提出的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Dense-Sparse Representations for Real-Time Question Answering
Existing real-time question answering models have shown speed benefits on open-domain tasks. However, they possess limited phrase representations and are susceptible to information loss, which leads to low accuracy. In this paper, we propose modified contextualized sparse and dense encoders to improve the context embedding quality. For sparse encoding, we propose the JM-Sparse, which utilizes joint multi-head attention to focus on crucial information in different context locations and subsequently learn sparse vectors within an n-gram vocabulary space. Moreover, we leverage the similarity-enhanced dense(SE-Dense) vector to obtain rich contextual dense representations. To effectively combine dense and sparse features, we train the weights of dense and sparse vectors dynamically. Extensive experiments on standard benchmarks demonstrate the effectiveness of the proposed method compared with other query-agnostic models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信