射频域波形表示与合成的RiftNet重构模型

Joseph M. Carmack, Scott Kuzdeba
{"title":"射频域波形表示与合成的RiftNet重构模型","authors":"Joseph M. Carmack, Scott Kuzdeba","doi":"10.1109/AIIoT52608.2021.9454242","DOIUrl":null,"url":null,"abstract":"Waveform representation, manipulation, and synthesis are challenging problems in the RF domain traditionally demanding expert knowledge to produce transparent and efficient solutions. In this work we present a low-complexity neural network architecture for waveform representation, manipulation, and synthesis. We demonstrate this architecture's performance by training it to represent Wi-Fi 802.11a/g waveforms and modify them with the objective of enhancing waveform distinguishability for RF fingerprint classification. We further present analysis of the network waveforms' latent representation to discover time and frequency properties of the learned transform. We discuss these properties in the context of traditional signals processing transforms to increase understanding and transparency of the algorithm and inspire future research into this domain. Although we target RF domain applications, we expect this architecture's performance and benefits to have high transferability to other domains.","PeriodicalId":443405,"journal":{"name":"2021 IEEE World AI IoT Congress (AIIoT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"RiftNet Reconstruction Model for Radio Frequency Domain Waveform Representation and Synthesis\",\"authors\":\"Joseph M. Carmack, Scott Kuzdeba\",\"doi\":\"10.1109/AIIoT52608.2021.9454242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waveform representation, manipulation, and synthesis are challenging problems in the RF domain traditionally demanding expert knowledge to produce transparent and efficient solutions. In this work we present a low-complexity neural network architecture for waveform representation, manipulation, and synthesis. We demonstrate this architecture's performance by training it to represent Wi-Fi 802.11a/g waveforms and modify them with the objective of enhancing waveform distinguishability for RF fingerprint classification. We further present analysis of the network waveforms' latent representation to discover time and frequency properties of the learned transform. We discuss these properties in the context of traditional signals processing transforms to increase understanding and transparency of the algorithm and inspire future research into this domain. Although we target RF domain applications, we expect this architecture's performance and benefits to have high transferability to other domains.\",\"PeriodicalId\":443405,\"journal\":{\"name\":\"2021 IEEE World AI IoT Congress (AIIoT)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE World AI IoT Congress (AIIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIIoT52608.2021.9454242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIIoT52608.2021.9454242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

波形表示、操作和合成是射频领域具有挑战性的问题,传统上需要专业知识来产生透明和高效的解决方案。在这项工作中,我们提出了一个用于波形表示、操作和合成的低复杂度神经网络架构。我们通过训练该架构来表示Wi-Fi 802.11a/g波形,并对其进行修改,以增强射频指纹分类的波形可分辨性,从而展示了该架构的性能。我们进一步分析了网络波形的潜在表示,以发现学习到的变换的时间和频率特性。我们在传统信号处理变换的背景下讨论这些特性,以增加对算法的理解和透明度,并激发未来对该领域的研究。虽然我们的目标是射频领域的应用,但我们希望这种架构的性能和优势能够高度转移到其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RiftNet Reconstruction Model for Radio Frequency Domain Waveform Representation and Synthesis
Waveform representation, manipulation, and synthesis are challenging problems in the RF domain traditionally demanding expert knowledge to produce transparent and efficient solutions. In this work we present a low-complexity neural network architecture for waveform representation, manipulation, and synthesis. We demonstrate this architecture's performance by training it to represent Wi-Fi 802.11a/g waveforms and modify them with the objective of enhancing waveform distinguishability for RF fingerprint classification. We further present analysis of the network waveforms' latent representation to discover time and frequency properties of the learned transform. We discuss these properties in the context of traditional signals processing transforms to increase understanding and transparency of the algorithm and inspire future research into this domain. Although we target RF domain applications, we expect this architecture's performance and benefits to have high transferability to other domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信