关于k-均值聚类的最优性

Lori A. Dalton
{"title":"关于k-均值聚类的最优性","authors":"Lori A. Dalton","doi":"10.1109/GENSIPS.2013.6735934","DOIUrl":null,"url":null,"abstract":"Although it is typically accepted that cluster analysis is a subjective activity, without an objective framework it is impossible to understand, let alone guarantee, the predictive capacity of clustering. To address this, recent work utilizes random point process theory to develop a probabilistic theory of clustering. The theory fully parallels Bayes decision theory for classification: given a known underlying processes and specified cost function there exist Bayes clustering operators with minimum expected error. Clustering is hence transformed from a subjective activity to an objective operation. In this work, we present conditions under which the optimization function utilized in classical k-means clustering is optimal in the new Bayes clustering theory, and thus begin to understand this algorithm objectively.","PeriodicalId":336511,"journal":{"name":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the optimality of k-means clustering\",\"authors\":\"Lori A. Dalton\",\"doi\":\"10.1109/GENSIPS.2013.6735934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although it is typically accepted that cluster analysis is a subjective activity, without an objective framework it is impossible to understand, let alone guarantee, the predictive capacity of clustering. To address this, recent work utilizes random point process theory to develop a probabilistic theory of clustering. The theory fully parallels Bayes decision theory for classification: given a known underlying processes and specified cost function there exist Bayes clustering operators with minimum expected error. Clustering is hence transformed from a subjective activity to an objective operation. In this work, we present conditions under which the optimization function utilized in classical k-means clustering is optimal in the new Bayes clustering theory, and thus begin to understand this algorithm objectively.\",\"PeriodicalId\":336511,\"journal\":{\"name\":\"2013 IEEE International Workshop on Genomic Signal Processing and Statistics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Workshop on Genomic Signal Processing and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GENSIPS.2013.6735934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSIPS.2013.6735934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

虽然人们通常认为聚类分析是一种主观活动,但如果没有客观的框架,就不可能理解聚类的预测能力,更不用说保证了。为了解决这个问题,最近的工作利用随机点过程理论来发展聚类的概率理论。该理论与贝叶斯分类决策理论完全相似:给定已知的底层过程和指定的成本函数,存在期望误差最小的贝叶斯聚类算子。因此,聚类从一种主观活动转变为一种客观操作。在这项工作中,我们提出了在新的贝叶斯聚类理论中,经典k-means聚类所使用的优化函数是最优的条件,从而开始客观地理解该算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the optimality of k-means clustering
Although it is typically accepted that cluster analysis is a subjective activity, without an objective framework it is impossible to understand, let alone guarantee, the predictive capacity of clustering. To address this, recent work utilizes random point process theory to develop a probabilistic theory of clustering. The theory fully parallels Bayes decision theory for classification: given a known underlying processes and specified cost function there exist Bayes clustering operators with minimum expected error. Clustering is hence transformed from a subjective activity to an objective operation. In this work, we present conditions under which the optimization function utilized in classical k-means clustering is optimal in the new Bayes clustering theory, and thus begin to understand this algorithm objectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信