序参量各向异性对UPt3涡旋晶格的影响

K. Avers, W. Gannon, A. Leishman, L. Debeer-Schmitt, W. Halperin, M. Eskildsen
{"title":"序参量各向异性对UPt3涡旋晶格的影响","authors":"K. Avers, W. Gannon, A. Leishman, L. Debeer-Schmitt, W. Halperin, M. Eskildsen","doi":"10.3389/femat.2022.878308","DOIUrl":null,"url":null,"abstract":"We have used small-angle neutron scattering to determine the vortex lattice phase diagram in the topological superconductor UPt3 for the applied magnetic field along the crystalline c-axis. A triangular vortex lattice is observed throughout the superconducting state, but with an orientation relative to the hexagonal basal plane that changes with field and temperature. At low temperature, in the chiral B phase, the vortex lattice undergoes a non-monotonic rotation with increasing magnetic field. The rotation amplitude decreases with increasing temperature and vanishes before reaching the A phase. Within the A phase an abrupt ±15° vortex lattice rotation was previously reported by Huxley et al., Nature 406, 160-164 (2000). The complex phase diagram may be understood from competing effects of the superconducting order parameter, the symmetry breaking field, and the Fermi surface anisotropy. The low-temperature rotated phase, centered around 0.8 T, reported by Avers et al., Nature Physics 16, 531-535 (2020), can be attributed directly to the symmetry breaking field.","PeriodicalId":119676,"journal":{"name":"Frontiers in Electronic Materials","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of the Order Parameter Anisotropy on the Vortex Lattice in UPt3\",\"authors\":\"K. Avers, W. Gannon, A. Leishman, L. Debeer-Schmitt, W. Halperin, M. Eskildsen\",\"doi\":\"10.3389/femat.2022.878308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have used small-angle neutron scattering to determine the vortex lattice phase diagram in the topological superconductor UPt3 for the applied magnetic field along the crystalline c-axis. A triangular vortex lattice is observed throughout the superconducting state, but with an orientation relative to the hexagonal basal plane that changes with field and temperature. At low temperature, in the chiral B phase, the vortex lattice undergoes a non-monotonic rotation with increasing magnetic field. The rotation amplitude decreases with increasing temperature and vanishes before reaching the A phase. Within the A phase an abrupt ±15° vortex lattice rotation was previously reported by Huxley et al., Nature 406, 160-164 (2000). The complex phase diagram may be understood from competing effects of the superconducting order parameter, the symmetry breaking field, and the Fermi surface anisotropy. The low-temperature rotated phase, centered around 0.8 T, reported by Avers et al., Nature Physics 16, 531-535 (2020), can be attributed directly to the symmetry breaking field.\",\"PeriodicalId\":119676,\"journal\":{\"name\":\"Frontiers in Electronic Materials\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/femat.2022.878308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/femat.2022.878308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们利用小角中子散射法确定了拓扑超导体UPt3在外加磁场作用下沿晶体c轴的涡点阵相图。在整个超导态中观察到一个三角形涡晶格,但其取向相对于六边形基底面,随场和温度的变化而变化。在低温下,在手性B相中,涡旋晶格随着磁场的增大而发生非单调旋转。旋转振幅随温度升高而减小,在到达A相之前消失。在A相中,Huxley等人在Nature 406, 160-164(2000)中报道了±15°旋涡晶格的突然旋转。复相图可以从超导序参量、对称破缺场和费米表面各向异性的竞争效应来理解。由Avers et al., Nature Physics 16, 531-535(2020)报道的以0.8 T为中心的低温旋转相位可以直接归因于对称破缺场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of the Order Parameter Anisotropy on the Vortex Lattice in UPt3
We have used small-angle neutron scattering to determine the vortex lattice phase diagram in the topological superconductor UPt3 for the applied magnetic field along the crystalline c-axis. A triangular vortex lattice is observed throughout the superconducting state, but with an orientation relative to the hexagonal basal plane that changes with field and temperature. At low temperature, in the chiral B phase, the vortex lattice undergoes a non-monotonic rotation with increasing magnetic field. The rotation amplitude decreases with increasing temperature and vanishes before reaching the A phase. Within the A phase an abrupt ±15° vortex lattice rotation was previously reported by Huxley et al., Nature 406, 160-164 (2000). The complex phase diagram may be understood from competing effects of the superconducting order parameter, the symmetry breaking field, and the Fermi surface anisotropy. The low-temperature rotated phase, centered around 0.8 T, reported by Avers et al., Nature Physics 16, 531-535 (2020), can be attributed directly to the symmetry breaking field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信