{"title":"具有载波聚合的LTE HetNets的下行链路传输功率设置","authors":"Zana Limani Fazliu, C. Chiasserini, G. Dell'Aera","doi":"10.1109/WoWMoM.2016.7523513","DOIUrl":null,"url":null,"abstract":"Carrier aggregation, which allows users to aggregate several component carriers to obtain up to 100 MHz of bandwidth, is one of the central features envisioned for next generation cellular networks. While this feature will enable support for higher data rates and improve quality of service, it may also be employed as an effective interference mitigation technique, especially in multi-tier heterogeneous networks. Having in mind that the aggregated component carriers may belong to different frequency bands and, hence, have varying propagation profiles, we argue that it is not necessary, indeed even harmful, to transmit at maximum power at all carriers, at all times. Rather, by using game theory, we design a distributed algorithm that lets eNodeBs and micro base stations dynamically adjust the downlink transmit power for the different component carriers. We compare our scheme to different power strategies combined with popular interference mitigation techniques, in a typical large-scale scenario, and show that our solution significantly outperforms the other strategies in terms of global network utility, power consumption and user throughput.","PeriodicalId":187747,"journal":{"name":"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Downlink transmit power setting in LTE HetNets with carrier aggregation\",\"authors\":\"Zana Limani Fazliu, C. Chiasserini, G. Dell'Aera\",\"doi\":\"10.1109/WoWMoM.2016.7523513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carrier aggregation, which allows users to aggregate several component carriers to obtain up to 100 MHz of bandwidth, is one of the central features envisioned for next generation cellular networks. While this feature will enable support for higher data rates and improve quality of service, it may also be employed as an effective interference mitigation technique, especially in multi-tier heterogeneous networks. Having in mind that the aggregated component carriers may belong to different frequency bands and, hence, have varying propagation profiles, we argue that it is not necessary, indeed even harmful, to transmit at maximum power at all carriers, at all times. Rather, by using game theory, we design a distributed algorithm that lets eNodeBs and micro base stations dynamically adjust the downlink transmit power for the different component carriers. We compare our scheme to different power strategies combined with popular interference mitigation techniques, in a typical large-scale scenario, and show that our solution significantly outperforms the other strategies in terms of global network utility, power consumption and user throughput.\",\"PeriodicalId\":187747,\"journal\":{\"name\":\"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WoWMoM.2016.7523513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM.2016.7523513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Downlink transmit power setting in LTE HetNets with carrier aggregation
Carrier aggregation, which allows users to aggregate several component carriers to obtain up to 100 MHz of bandwidth, is one of the central features envisioned for next generation cellular networks. While this feature will enable support for higher data rates and improve quality of service, it may also be employed as an effective interference mitigation technique, especially in multi-tier heterogeneous networks. Having in mind that the aggregated component carriers may belong to different frequency bands and, hence, have varying propagation profiles, we argue that it is not necessary, indeed even harmful, to transmit at maximum power at all carriers, at all times. Rather, by using game theory, we design a distributed algorithm that lets eNodeBs and micro base stations dynamically adjust the downlink transmit power for the different component carriers. We compare our scheme to different power strategies combined with popular interference mitigation techniques, in a typical large-scale scenario, and show that our solution significantly outperforms the other strategies in terms of global network utility, power consumption and user throughput.