Valentine Kabanets, Sajin Koroth, Zhenjian Lu, Dimitrios Myrisiotis, I. Oliveira
{"title":"低通信叶门De Morgan公式的算法及下界","authors":"Valentine Kabanets, Sajin Koroth, Zhenjian Lu, Dimitrios Myrisiotis, I. Oliveira","doi":"10.1145/3470861","DOIUrl":null,"url":null,"abstract":"The class FORMULA[s]∘G consists of Boolean functions computable by size-s De Morgan formulas whose leaves are any Boolean functions from a class G. We give lower bounds and (SAT, Learning, and pseudorandom generators (PRGs)) algorithms for FORMULA[n1.99]∘G, for classes G of functions with low communication complexity. Let R(k)G be the maximum k-party number-on-forehead randomized communication complexity of a function in G. Among other results, we show the following: • The Generalized Inner Product function GIPkn cannot be computed in FORMULA[s]° G on more than 1/2+ε fraction of inputs for s=o(n2/k⋅4k⋅R(k)(G)⋅log(n/ε)⋅log(1/ε))2). This significantly extends the lower bounds against bipartite formulas obtained by [62]. As a corollary, we get an average-case lower bound for GIPkn against FORMULA[n1.99]∘PTFk−1, i.e., sub-quadratic-size De Morgan formulas with degree-k-1) PTF (polynomial threshold function) gates at the bottom. Previously, it was open whether a super-linear lower bound holds for AND of PTFs.• There is a PRG of seed length n/2+O(s⋅R(2)(G)⋅log(s/ε)⋅log(1/ε)) that ε-fools FORMULA[s]∘G. For the special case of FORMULA[s]∘LTF, i.e., size-s formulas with LTF (linear threshold function) gates at the bottom, we get the better seed length O(n1/2⋅s1/4⋅log(n)⋅log(n/ε)). In particular, this provides the first non-trivial PRG (with seed length o(n)) for intersections of n halfspaces in the regime where ε≤1/n, complementing a recent result of [45].• There exists a randomized 2n-t #SAT algorithm for FORMULA[s]∘G, where t=Ω(n\\√s⋅log2(s)⋅R(2)(G))/1/2. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n1.99]∘LTF.• The Minimum Circuit Size Problem is not in FORMULA[n1.99]∘XOR; thereby making progress on hardness magnification, in connection with results from [14, 46]. On the algorithmic side, we show that the concept class FORMULA[n1.99]∘XOR can be PAC-learned in time 2O(n/log n).","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates\",\"authors\":\"Valentine Kabanets, Sajin Koroth, Zhenjian Lu, Dimitrios Myrisiotis, I. Oliveira\",\"doi\":\"10.1145/3470861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The class FORMULA[s]∘G consists of Boolean functions computable by size-s De Morgan formulas whose leaves are any Boolean functions from a class G. We give lower bounds and (SAT, Learning, and pseudorandom generators (PRGs)) algorithms for FORMULA[n1.99]∘G, for classes G of functions with low communication complexity. Let R(k)G be the maximum k-party number-on-forehead randomized communication complexity of a function in G. Among other results, we show the following: • The Generalized Inner Product function GIPkn cannot be computed in FORMULA[s]° G on more than 1/2+ε fraction of inputs for s=o(n2/k⋅4k⋅R(k)(G)⋅log(n/ε)⋅log(1/ε))2). This significantly extends the lower bounds against bipartite formulas obtained by [62]. As a corollary, we get an average-case lower bound for GIPkn against FORMULA[n1.99]∘PTFk−1, i.e., sub-quadratic-size De Morgan formulas with degree-k-1) PTF (polynomial threshold function) gates at the bottom. Previously, it was open whether a super-linear lower bound holds for AND of PTFs.• There is a PRG of seed length n/2+O(s⋅R(2)(G)⋅log(s/ε)⋅log(1/ε)) that ε-fools FORMULA[s]∘G. For the special case of FORMULA[s]∘LTF, i.e., size-s formulas with LTF (linear threshold function) gates at the bottom, we get the better seed length O(n1/2⋅s1/4⋅log(n)⋅log(n/ε)). In particular, this provides the first non-trivial PRG (with seed length o(n)) for intersections of n halfspaces in the regime where ε≤1/n, complementing a recent result of [45].• There exists a randomized 2n-t #SAT algorithm for FORMULA[s]∘G, where t=Ω(n\\\\√s⋅log2(s)⋅R(2)(G))/1/2. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n1.99]∘LTF.• The Minimum Circuit Size Problem is not in FORMULA[n1.99]∘XOR; thereby making progress on hardness magnification, in connection with results from [14, 46]. On the algorithmic side, we show that the concept class FORMULA[n1.99]∘XOR can be PAC-learned in time 2O(n/log n).\",\"PeriodicalId\":198744,\"journal\":{\"name\":\"ACM Transactions on Computation Theory (TOCT)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory (TOCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3470861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates
The class FORMULA[s]∘G consists of Boolean functions computable by size-s De Morgan formulas whose leaves are any Boolean functions from a class G. We give lower bounds and (SAT, Learning, and pseudorandom generators (PRGs)) algorithms for FORMULA[n1.99]∘G, for classes G of functions with low communication complexity. Let R(k)G be the maximum k-party number-on-forehead randomized communication complexity of a function in G. Among other results, we show the following: • The Generalized Inner Product function GIPkn cannot be computed in FORMULA[s]° G on more than 1/2+ε fraction of inputs for s=o(n2/k⋅4k⋅R(k)(G)⋅log(n/ε)⋅log(1/ε))2). This significantly extends the lower bounds against bipartite formulas obtained by [62]. As a corollary, we get an average-case lower bound for GIPkn against FORMULA[n1.99]∘PTFk−1, i.e., sub-quadratic-size De Morgan formulas with degree-k-1) PTF (polynomial threshold function) gates at the bottom. Previously, it was open whether a super-linear lower bound holds for AND of PTFs.• There is a PRG of seed length n/2+O(s⋅R(2)(G)⋅log(s/ε)⋅log(1/ε)) that ε-fools FORMULA[s]∘G. For the special case of FORMULA[s]∘LTF, i.e., size-s formulas with LTF (linear threshold function) gates at the bottom, we get the better seed length O(n1/2⋅s1/4⋅log(n)⋅log(n/ε)). In particular, this provides the first non-trivial PRG (with seed length o(n)) for intersections of n halfspaces in the regime where ε≤1/n, complementing a recent result of [45].• There exists a randomized 2n-t #SAT algorithm for FORMULA[s]∘G, where t=Ω(n\√s⋅log2(s)⋅R(2)(G))/1/2. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n1.99]∘LTF.• The Minimum Circuit Size Problem is not in FORMULA[n1.99]∘XOR; thereby making progress on hardness magnification, in connection with results from [14, 46]. On the algorithmic side, we show that the concept class FORMULA[n1.99]∘XOR can be PAC-learned in time 2O(n/log n).