即插即用灌溉控制的规模

Daniel A. Winkler, M. A. Carreira-Perpiñán, Alberto Cerpa
{"title":"即插即用灌溉控制的规模","authors":"Daniel A. Winkler, M. A. Carreira-Perpiñán, Alberto Cerpa","doi":"10.1109/IPSN.2018.00008","DOIUrl":null,"url":null,"abstract":"Lawns, also known as turf, cover an estimated 128,000km^2 in North America alone, with landscape requirements representing 30% of freshwater consumed in the residential domain. With this consumption comes a large amount of environmental, economic, and social incentive to make turf irrigation systems as efficient as possible. Recent work introduced the concept of distributed control in irrigation systems, but existing control strategies either do not take advantage of the distributed control, or don't revise the strategy over time in response to collected data. In this work, we introduce PICS, a data-driven control strategy that self-improves over time, adapts to the local specific conditions and weather changes, and requires virtually no human input in both setup and maintenance providing a plug-and-play system that requires minimal pre-deployment efforts. In addition to substantial improvements in ease-of-use, we find across 4 weeks of large-scale irrigation system deployment that PICS improves system efficiency by 12.0% in comparison to industry best and 3.3% in comparison to academic state-of-the-art. Despite using less water, PICS also was found to improve quality of service by a factor of 4.0x compared to industry best and 2.5x compared to academic state of the art.","PeriodicalId":358074,"journal":{"name":"2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Plug-and-Play Irrigation Control at Scale\",\"authors\":\"Daniel A. Winkler, M. A. Carreira-Perpiñán, Alberto Cerpa\",\"doi\":\"10.1109/IPSN.2018.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lawns, also known as turf, cover an estimated 128,000km^2 in North America alone, with landscape requirements representing 30% of freshwater consumed in the residential domain. With this consumption comes a large amount of environmental, economic, and social incentive to make turf irrigation systems as efficient as possible. Recent work introduced the concept of distributed control in irrigation systems, but existing control strategies either do not take advantage of the distributed control, or don't revise the strategy over time in response to collected data. In this work, we introduce PICS, a data-driven control strategy that self-improves over time, adapts to the local specific conditions and weather changes, and requires virtually no human input in both setup and maintenance providing a plug-and-play system that requires minimal pre-deployment efforts. In addition to substantial improvements in ease-of-use, we find across 4 weeks of large-scale irrigation system deployment that PICS improves system efficiency by 12.0% in comparison to industry best and 3.3% in comparison to academic state-of-the-art. Despite using less water, PICS also was found to improve quality of service by a factor of 4.0x compared to industry best and 2.5x compared to academic state of the art.\",\"PeriodicalId\":358074,\"journal\":{\"name\":\"2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPSN.2018.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPSN.2018.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

草坪,也被称为草皮,仅在北美就覆盖了大约128,000平方公里,其景观需求占住宅领域淡水消耗的30%。伴随这种消耗而来的是大量的环境、经济和社会激励,以使草坪灌溉系统尽可能高效。最近的研究在灌溉系统中引入了分布式控制的概念,但现有的控制策略要么没有利用分布式控制,要么没有随着时间的推移根据收集到的数据修改策略。在这项工作中,我们介绍了PICS,这是一种数据驱动的控制策略,可以随着时间的推移自我改进,适应当地的特定条件和天气变化,并且在设置和维护过程中几乎不需要人工输入,提供了一个即插即用系统,只需最少的预部署工作。除了易用性方面的重大改进之外,我们发现在4周的大规模灌溉系统部署中,与行业最佳相比,PICS将系统效率提高了12.0%,与学术最新水平相比,提高了3.3%。尽管使用更少的水,与行业最佳水平相比,PICS的服务质量提高了4.0倍,与学术水平相比提高了2.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plug-and-Play Irrigation Control at Scale
Lawns, also known as turf, cover an estimated 128,000km^2 in North America alone, with landscape requirements representing 30% of freshwater consumed in the residential domain. With this consumption comes a large amount of environmental, economic, and social incentive to make turf irrigation systems as efficient as possible. Recent work introduced the concept of distributed control in irrigation systems, but existing control strategies either do not take advantage of the distributed control, or don't revise the strategy over time in response to collected data. In this work, we introduce PICS, a data-driven control strategy that self-improves over time, adapts to the local specific conditions and weather changes, and requires virtually no human input in both setup and maintenance providing a plug-and-play system that requires minimal pre-deployment efforts. In addition to substantial improvements in ease-of-use, we find across 4 weeks of large-scale irrigation system deployment that PICS improves system efficiency by 12.0% in comparison to industry best and 3.3% in comparison to academic state-of-the-art. Despite using less water, PICS also was found to improve quality of service by a factor of 4.0x compared to industry best and 2.5x compared to academic state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信