最佳永久八卦计划的规则

I. Avramovic, D. Richards
{"title":"最佳永久八卦计划的规则","authors":"I. Avramovic, D. Richards","doi":"10.1109/CSCI51800.2020.00043","DOIUrl":null,"url":null,"abstract":"Perpetual gossiping is an all-to-all communication problem on social networks, or any coordinated distributed system in general. In perpetual gossiping, a state of universal reachability is maintained by a continuous sequence of communications between participants. Unlike the well-understood static case, perpetual gossiping is a difficult problem, with some NP-complete classes of solutions. A basic question which remains open is whether an optimal scheme of contiguous calls is guaranteed to exist for a tree. This paper presents a series of theoretical tools directed towards answering the question.","PeriodicalId":336929,"journal":{"name":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rules for Optimal Perpetual Gossiping Schemes\",\"authors\":\"I. Avramovic, D. Richards\",\"doi\":\"10.1109/CSCI51800.2020.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perpetual gossiping is an all-to-all communication problem on social networks, or any coordinated distributed system in general. In perpetual gossiping, a state of universal reachability is maintained by a continuous sequence of communications between participants. Unlike the well-understood static case, perpetual gossiping is a difficult problem, with some NP-complete classes of solutions. A basic question which remains open is whether an optimal scheme of contiguous calls is guaranteed to exist for a tree. This paper presents a series of theoretical tools directed towards answering the question.\",\"PeriodicalId\":336929,\"journal\":{\"name\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI51800.2020.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI51800.2020.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

永久的八卦是社交网络或任何协调分布式系统中所有人的交流问题。在没完没了的八卦中,参与者之间的连续交流维持了一种普遍可及的状态。与众所周知的静态情况不同,永久八卦是一个难题,具有一些np完全类的解。一个悬而未决的基本问题是,对于树是否保证存在连续调用的最优方案。本文提出了一系列旨在回答这个问题的理论工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rules for Optimal Perpetual Gossiping Schemes
Perpetual gossiping is an all-to-all communication problem on social networks, or any coordinated distributed system in general. In perpetual gossiping, a state of universal reachability is maintained by a continuous sequence of communications between participants. Unlike the well-understood static case, perpetual gossiping is a difficult problem, with some NP-complete classes of solutions. A basic question which remains open is whether an optimal scheme of contiguous calls is guaranteed to exist for a tree. This paper presents a series of theoretical tools directed towards answering the question.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信