不确定非齐次马尔可夫跳变线性系统的鲁棒镇定

M. Faraji-Niri, M. Jahed-Motlagh, Mojtaba Barkhordari-Yazdi
{"title":"不确定非齐次马尔可夫跳变线性系统的鲁棒镇定","authors":"M. Faraji-Niri, M. Jahed-Motlagh, Mojtaba Barkhordari-Yazdi","doi":"10.1109/ICCIAUTOM.2013.6912806","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the problem of designing a robust state-feedback stabilizer for continuous-time Markov jump linear systems with time varying transition rates, i.e. for a non-homogeneous Markov jump linear system. Transition rates are assumed to be piecewise constant, so the Markov jump linear system is piecewise homogeneous in fact. The system is subject to mode-dependent, time varying but norm-bounded parametric uncertainty. The stabilization method is based on the Lyapunov function approach and uses piecewise constant Lyapunov candidate. The robust stochastic mode-dependent stabilizer is presented in terms of linear matrix inequalities and an illustrative example is provided to verify the theoretical results.","PeriodicalId":444883,"journal":{"name":"The 3rd International Conference on Control, Instrumentation, and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Robust stabilization of uncertain non-homogeneous Markov jump linear systems\",\"authors\":\"M. Faraji-Niri, M. Jahed-Motlagh, Mojtaba Barkhordari-Yazdi\",\"doi\":\"10.1109/ICCIAUTOM.2013.6912806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the problem of designing a robust state-feedback stabilizer for continuous-time Markov jump linear systems with time varying transition rates, i.e. for a non-homogeneous Markov jump linear system. Transition rates are assumed to be piecewise constant, so the Markov jump linear system is piecewise homogeneous in fact. The system is subject to mode-dependent, time varying but norm-bounded parametric uncertainty. The stabilization method is based on the Lyapunov function approach and uses piecewise constant Lyapunov candidate. The robust stochastic mode-dependent stabilizer is presented in terms of linear matrix inequalities and an illustrative example is provided to verify the theoretical results.\",\"PeriodicalId\":444883,\"journal\":{\"name\":\"The 3rd International Conference on Control, Instrumentation, and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd International Conference on Control, Instrumentation, and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIAUTOM.2013.6912806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd International Conference on Control, Instrumentation, and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2013.6912806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究具有时变过渡速率的连续马尔可夫跳变线性系统,即非齐次马尔可夫跳变线性系统的鲁棒状态反馈稳定器的设计问题。假设跃迁速率是分段常数,因此马尔可夫跳变线性系统实际上是分段齐次的。系统具有模相关、时变但有范数限制的参数不确定性。该方法基于Lyapunov函数方法,并使用分段常数Lyapunov候选者。用线性矩阵不等式的形式给出了鲁棒随机模相关稳定器,并用实例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust stabilization of uncertain non-homogeneous Markov jump linear systems
This paper is concerned with the problem of designing a robust state-feedback stabilizer for continuous-time Markov jump linear systems with time varying transition rates, i.e. for a non-homogeneous Markov jump linear system. Transition rates are assumed to be piecewise constant, so the Markov jump linear system is piecewise homogeneous in fact. The system is subject to mode-dependent, time varying but norm-bounded parametric uncertainty. The stabilization method is based on the Lyapunov function approach and uses piecewise constant Lyapunov candidate. The robust stochastic mode-dependent stabilizer is presented in terms of linear matrix inequalities and an illustrative example is provided to verify the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信