拉普拉斯分解方法在分数阶Riccati方程中的应用

Deepika Jain, Deepti Arela
{"title":"拉普拉斯分解方法在分数阶Riccati方程中的应用","authors":"Deepika Jain, Deepti Arela","doi":"10.47904/ijskit.12.1.2022.95-98","DOIUrl":null,"url":null,"abstract":"- In this manuscript, we apply a new technique named the Laplace Decomposition Method (LDM) to the fractional differential equation called the Riccati equation. Laplace Decomposition Method (LDM) is based on the Laplace Transform Method (LTM) and Adomain Decomposition Method (ADM). We attempt to give an estimated solution to the fractional Riccati differential equation using Laplace decomposition method and we also observe the behavior of the solution obtained. LDM makes it very easy to solve linear and non-linear fractional differential equations and gives exact solutions in the form of convergence series. The graphical interpretation of the behavior of the result is also given at the end of this manuscript, which is comparable with the results obtained by other methods.","PeriodicalId":424149,"journal":{"name":"SKIT Research Journal","volume":"10 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Laplace Decomposition Method to Fractional Riccati Equations\",\"authors\":\"Deepika Jain, Deepti Arela\",\"doi\":\"10.47904/ijskit.12.1.2022.95-98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"- In this manuscript, we apply a new technique named the Laplace Decomposition Method (LDM) to the fractional differential equation called the Riccati equation. Laplace Decomposition Method (LDM) is based on the Laplace Transform Method (LTM) and Adomain Decomposition Method (ADM). We attempt to give an estimated solution to the fractional Riccati differential equation using Laplace decomposition method and we also observe the behavior of the solution obtained. LDM makes it very easy to solve linear and non-linear fractional differential equations and gives exact solutions in the form of convergence series. The graphical interpretation of the behavior of the result is also given at the end of this manuscript, which is comparable with the results obtained by other methods.\",\"PeriodicalId\":424149,\"journal\":{\"name\":\"SKIT Research Journal\",\"volume\":\"10 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SKIT Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47904/ijskit.12.1.2022.95-98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SKIT Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47904/ijskit.12.1.2022.95-98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将一种名为拉普拉斯分解法(LDM)的新技术应用于分数阶微分方程Riccati方程。拉普拉斯分解方法(LDM)是在拉普拉斯变换方法(LTM)和域分解方法(ADM)的基础上发展起来的。我们尝试用拉普拉斯分解的方法给出分数阶Riccati微分方程的估计解,并观察解的性质。LDM使求解线性和非线性分数阶微分方程变得非常容易,并以收敛级数的形式给出精确解。本文最后还给出了结果行为的图解解释,这与用其他方法得到的结果是可比较的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Laplace Decomposition Method to Fractional Riccati Equations
- In this manuscript, we apply a new technique named the Laplace Decomposition Method (LDM) to the fractional differential equation called the Riccati equation. Laplace Decomposition Method (LDM) is based on the Laplace Transform Method (LTM) and Adomain Decomposition Method (ADM). We attempt to give an estimated solution to the fractional Riccati differential equation using Laplace decomposition method and we also observe the behavior of the solution obtained. LDM makes it very easy to solve linear and non-linear fractional differential equations and gives exact solutions in the form of convergence series. The graphical interpretation of the behavior of the result is also given at the end of this manuscript, which is comparable with the results obtained by other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信